{"title":"用三角傅立叶和逼近分段光滑函数","authors":"M. Magomed-Kasumov","doi":"10.31029/demr.12.3","DOIUrl":null,"url":null,"abstract":"We obtain exact order-of-magnitude estimates of piecewise smooth functions approximation by trigonometric Fourier sums. It is shown that in continuity points Fourier series of piecewise Lipschitz function converges with rate $\\ln n/n$. If function $f$ has a piecewise absolutely continuous derivative then it is proven that in continuity points decay order of Fourier series remainder $R_n(f,x)$ for such function is equal to $1/n$. We also obtain exact order-of-magnitude estimates for $q$-times differentiable functions with piecewise smooth $q$-th derivative. In particular, if $f^{(q)}(x)$ is piecewise Lipschitz then $|R_n(f,x)| \\le c(x)\\frac{\\ln n}{n^{q+1}}$ in continuity points of $f^{(q)}(x)$ and $\\sup_{x \\in [0,2\\pi]}|R_n(f,x)| \\le \\frac{c}{n^q}$. In case when $f^{(q)}(x)$ has piecewise absolutely continuous derivative it is shown that $|R_n(f,x)| \\le \\frac{c(x)}{n^{q+1}}$ in continuity points of $f^{(q)}(x)$. As a consequence of the last result convergence rate estimate of Fourier series to continuous piecewise linear functions is obtained.","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The approximation of piecewise smooth functions by trigonometric Fourier sums\",\"authors\":\"M. Magomed-Kasumov\",\"doi\":\"10.31029/demr.12.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain exact order-of-magnitude estimates of piecewise smooth functions approximation by trigonometric Fourier sums. It is shown that in continuity points Fourier series of piecewise Lipschitz function converges with rate $\\\\ln n/n$. If function $f$ has a piecewise absolutely continuous derivative then it is proven that in continuity points decay order of Fourier series remainder $R_n(f,x)$ for such function is equal to $1/n$. We also obtain exact order-of-magnitude estimates for $q$-times differentiable functions with piecewise smooth $q$-th derivative. In particular, if $f^{(q)}(x)$ is piecewise Lipschitz then $|R_n(f,x)| \\\\le c(x)\\\\frac{\\\\ln n}{n^{q+1}}$ in continuity points of $f^{(q)}(x)$ and $\\\\sup_{x \\\\in [0,2\\\\pi]}|R_n(f,x)| \\\\le \\\\frac{c}{n^q}$. In case when $f^{(q)}(x)$ has piecewise absolutely continuous derivative it is shown that $|R_n(f,x)| \\\\le \\\\frac{c(x)}{n^{q+1}}$ in continuity points of $f^{(q)}(x)$. As a consequence of the last result convergence rate estimate of Fourier series to continuous piecewise linear functions is obtained.\",\"PeriodicalId\":431345,\"journal\":{\"name\":\"Daghestan Electronic Mathematical Reports\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Daghestan Electronic Mathematical Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31029/demr.12.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.12.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The approximation of piecewise smooth functions by trigonometric Fourier sums
We obtain exact order-of-magnitude estimates of piecewise smooth functions approximation by trigonometric Fourier sums. It is shown that in continuity points Fourier series of piecewise Lipschitz function converges with rate $\ln n/n$. If function $f$ has a piecewise absolutely continuous derivative then it is proven that in continuity points decay order of Fourier series remainder $R_n(f,x)$ for such function is equal to $1/n$. We also obtain exact order-of-magnitude estimates for $q$-times differentiable functions with piecewise smooth $q$-th derivative. In particular, if $f^{(q)}(x)$ is piecewise Lipschitz then $|R_n(f,x)| \le c(x)\frac{\ln n}{n^{q+1}}$ in continuity points of $f^{(q)}(x)$ and $\sup_{x \in [0,2\pi]}|R_n(f,x)| \le \frac{c}{n^q}$. In case when $f^{(q)}(x)$ has piecewise absolutely continuous derivative it is shown that $|R_n(f,x)| \le \frac{c(x)}{n^{q+1}}$ in continuity points of $f^{(q)}(x)$. As a consequence of the last result convergence rate estimate of Fourier series to continuous piecewise linear functions is obtained.