用三角傅立叶和逼近分段光滑函数

M. Magomed-Kasumov
{"title":"用三角傅立叶和逼近分段光滑函数","authors":"M. Magomed-Kasumov","doi":"10.31029/demr.12.3","DOIUrl":null,"url":null,"abstract":"We obtain exact order-of-magnitude estimates of piecewise smooth functions approximation by trigonometric Fourier sums. It is shown that in continuity points Fourier series of piecewise Lipschitz function converges with rate $\\ln n/n$. If function $f$ has a piecewise absolutely continuous derivative then it is proven that in continuity points decay order of Fourier series remainder $R_n(f,x)$ for such function is equal to $1/n$. We also obtain exact order-of-magnitude estimates for $q$-times differentiable functions with piecewise smooth $q$-th derivative. In particular, if $f^{(q)}(x)$ is piecewise Lipschitz then $|R_n(f,x)| \\le c(x)\\frac{\\ln n}{n^{q+1}}$ in continuity points of $f^{(q)}(x)$ and $\\sup_{x \\in [0,2\\pi]}|R_n(f,x)| \\le \\frac{c}{n^q}$. In case when $f^{(q)}(x)$ has piecewise absolutely continuous derivative it is shown that $|R_n(f,x)| \\le \\frac{c(x)}{n^{q+1}}$ in continuity points of $f^{(q)}(x)$. As a consequence of the last result convergence rate estimate of Fourier series to continuous piecewise linear functions is obtained.","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The approximation of piecewise smooth functions by trigonometric Fourier sums\",\"authors\":\"M. Magomed-Kasumov\",\"doi\":\"10.31029/demr.12.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain exact order-of-magnitude estimates of piecewise smooth functions approximation by trigonometric Fourier sums. It is shown that in continuity points Fourier series of piecewise Lipschitz function converges with rate $\\\\ln n/n$. If function $f$ has a piecewise absolutely continuous derivative then it is proven that in continuity points decay order of Fourier series remainder $R_n(f,x)$ for such function is equal to $1/n$. We also obtain exact order-of-magnitude estimates for $q$-times differentiable functions with piecewise smooth $q$-th derivative. In particular, if $f^{(q)}(x)$ is piecewise Lipschitz then $|R_n(f,x)| \\\\le c(x)\\\\frac{\\\\ln n}{n^{q+1}}$ in continuity points of $f^{(q)}(x)$ and $\\\\sup_{x \\\\in [0,2\\\\pi]}|R_n(f,x)| \\\\le \\\\frac{c}{n^q}$. In case when $f^{(q)}(x)$ has piecewise absolutely continuous derivative it is shown that $|R_n(f,x)| \\\\le \\\\frac{c(x)}{n^{q+1}}$ in continuity points of $f^{(q)}(x)$. As a consequence of the last result convergence rate estimate of Fourier series to continuous piecewise linear functions is obtained.\",\"PeriodicalId\":431345,\"journal\":{\"name\":\"Daghestan Electronic Mathematical Reports\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Daghestan Electronic Mathematical Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31029/demr.12.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.12.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过三角傅立叶和得到分段光滑函数近似的精确数量级估计。证明了在连续点上,分段Lipschitz函数的傅里叶级数收敛速度为$\ln n/n$。如果函数$f$具有分段绝对连续导数,则证明了在连续点上,该函数的傅里叶级数余量$R_n(f,x)$的衰减阶等于$1/n$。我们还获得了具有分段光滑$q$ -导数的$q$ -次可微函数的精确数量级估计。特别地,如果$f^{(q)}(x)$是分段Lipschitz,那么$|R_n(f,x)| \le c(x)\frac{\ln n}{n^{q+1}}$在$f^{(q)}(x)$和$\sup_{x \in [0,2\pi]}|R_n(f,x)| \le \frac{c}{n^q}$的连续点上。当$f^{(q)}(x)$具有分段绝对连续导数时,表明$|R_n(f,x)| \le \frac{c(x)}{n^{q+1}}$在$f^{(q)}(x)$的连续点上。根据最后的结果,得到了傅里叶级数对连续分段线性函数的收敛速率估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The approximation of piecewise smooth functions by trigonometric Fourier sums
We obtain exact order-of-magnitude estimates of piecewise smooth functions approximation by trigonometric Fourier sums. It is shown that in continuity points Fourier series of piecewise Lipschitz function converges with rate $\ln n/n$. If function $f$ has a piecewise absolutely continuous derivative then it is proven that in continuity points decay order of Fourier series remainder $R_n(f,x)$ for such function is equal to $1/n$. We also obtain exact order-of-magnitude estimates for $q$-times differentiable functions with piecewise smooth $q$-th derivative. In particular, if $f^{(q)}(x)$ is piecewise Lipschitz then $|R_n(f,x)| \le c(x)\frac{\ln n}{n^{q+1}}$ in continuity points of $f^{(q)}(x)$ and $\sup_{x \in [0,2\pi]}|R_n(f,x)| \le \frac{c}{n^q}$. In case when $f^{(q)}(x)$ has piecewise absolutely continuous derivative it is shown that $|R_n(f,x)| \le \frac{c(x)}{n^{q+1}}$ in continuity points of $f^{(q)}(x)$. As a consequence of the last result convergence rate estimate of Fourier series to continuous piecewise linear functions is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信