环境适应法

Anuj Chandila, S. Tiwari, K. Mishra, Akash Punhani
{"title":"环境适应法","authors":"Anuj Chandila, S. Tiwari, K. Mishra, Akash Punhani","doi":"10.4018/978-1-7998-8048-6.ch016","DOIUrl":null,"url":null,"abstract":"This article describes how optimization is a process of finding out the best solutions among all available solutions for a problem. Many randomized algorithms have been designed to identify optimal solutions in optimization problems. Among these algorithms evolutionary programming, evolutionary strategy, genetic algorithm, particle swarm optimization and genetic programming are widely accepted for the optimization problems. Although a number of randomized algorithms are available in literature for solving optimization problems yet their design objectives are same. Each algorithm has been designed to meet certain goals like minimizing total number of fitness evaluations to capture nearly optimal solutions, to capture diverse optimal solutions in multimodal solutions when needed and also to avoid the local optimal solution in multi modal problems. This article discusses a novel optimization algorithm named as Environmental Adaption Method (EAM) foable 3r solving the optimization problems. EAM is designed to reduce the overall processing time for retrieving optimal solution of the problem, to improve the quality of solutions and particularly to avoid being trapped in local optima. The results of the proposed algorithm are compared with the latest version of existing algorithms such as particle swarm optimization (PSO-TVAC), and differential evolution (SADE) on benchmark functions and the proposed algorithm proves its effectiveness over the existing algorithms in all the taken cases.","PeriodicalId":345892,"journal":{"name":"Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental Adaption Method\",\"authors\":\"Anuj Chandila, S. Tiwari, K. Mishra, Akash Punhani\",\"doi\":\"10.4018/978-1-7998-8048-6.ch016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes how optimization is a process of finding out the best solutions among all available solutions for a problem. Many randomized algorithms have been designed to identify optimal solutions in optimization problems. Among these algorithms evolutionary programming, evolutionary strategy, genetic algorithm, particle swarm optimization and genetic programming are widely accepted for the optimization problems. Although a number of randomized algorithms are available in literature for solving optimization problems yet their design objectives are same. Each algorithm has been designed to meet certain goals like minimizing total number of fitness evaluations to capture nearly optimal solutions, to capture diverse optimal solutions in multimodal solutions when needed and also to avoid the local optimal solution in multi modal problems. This article discusses a novel optimization algorithm named as Environmental Adaption Method (EAM) foable 3r solving the optimization problems. EAM is designed to reduce the overall processing time for retrieving optimal solution of the problem, to improve the quality of solutions and particularly to avoid being trapped in local optima. The results of the proposed algorithm are compared with the latest version of existing algorithms such as particle swarm optimization (PSO-TVAC), and differential evolution (SADE) on benchmark functions and the proposed algorithm proves its effectiveness over the existing algorithms in all the taken cases.\",\"PeriodicalId\":345892,\"journal\":{\"name\":\"Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-8048-6.ch016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-8048-6.ch016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了优化是如何从所有可用的解决方案中找出问题的最佳解决方案的过程。许多随机算法被设计用来识别最优化问题的最优解。在这些算法中,进化规划、进化策略、遗传算法、粒子群优化和遗传规划等算法被广泛应用于优化问题。虽然文献中出现了许多求解优化问题的随机算法,但它们的设计目标是一致的。每个算法都被设计为满足一定的目标,如最小化适应度评估的总数以捕获近最优解,在需要时捕获多模态解中的多个最优解,以及避免多模态问题中的局部最优解。本文讨论了一种新的优化算法——环境自适应法(EAM),该算法可用于解决优化问题。EAM的设计目的是减少问题最优解检索的总体处理时间,提高解的质量,特别是避免陷入局部最优。将所提算法与最新版本的粒子群优化算法(PSO-TVAC)和差分进化算法(SADE)在基准函数上进行了比较,结果表明所提算法在所有情况下都优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental Adaption Method
This article describes how optimization is a process of finding out the best solutions among all available solutions for a problem. Many randomized algorithms have been designed to identify optimal solutions in optimization problems. Among these algorithms evolutionary programming, evolutionary strategy, genetic algorithm, particle swarm optimization and genetic programming are widely accepted for the optimization problems. Although a number of randomized algorithms are available in literature for solving optimization problems yet their design objectives are same. Each algorithm has been designed to meet certain goals like minimizing total number of fitness evaluations to capture nearly optimal solutions, to capture diverse optimal solutions in multimodal solutions when needed and also to avoid the local optimal solution in multi modal problems. This article discusses a novel optimization algorithm named as Environmental Adaption Method (EAM) foable 3r solving the optimization problems. EAM is designed to reduce the overall processing time for retrieving optimal solution of the problem, to improve the quality of solutions and particularly to avoid being trapped in local optima. The results of the proposed algorithm are compared with the latest version of existing algorithms such as particle swarm optimization (PSO-TVAC), and differential evolution (SADE) on benchmark functions and the proposed algorithm proves its effectiveness over the existing algorithms in all the taken cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信