视频速率视频绘制

Rito Murase, Yan Zhang, Takayuki Okatani
{"title":"视频速率视频绘制","authors":"Rito Murase, Yan Zhang, Takayuki Okatani","doi":"10.1109/WACV.2019.00170","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of video inpainting, i.e., to remove specified objects from an input video. Many methods have been developed for the problem so far, in which there is a trade-off between image quality and computational time. There was no method that can generate high-quality images in video rate. The key to video inpainting is how to establish correspondences from scene regions occluded in a frame to those observed in other frames. To break the trade-off, we propose to use CNNs as a solution to this key problem. We extend existing CNNs for the standard task of optical flow estimation to be able to estimate the flow of occluded background regions. The extension includes augmentation of their architecture and changes of their training method. We experimentally show that this approach works well despite its simplicity, and that a simple video inpainting method integrating this flow estimator runs in video rate (e.g., 32fps for 832 × 448 pixel videos on a standard PC with a GPU) while achieving image quality close to the state-of-the-art.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Video-Rate Video Inpainting\",\"authors\":\"Rito Murase, Yan Zhang, Takayuki Okatani\",\"doi\":\"10.1109/WACV.2019.00170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of video inpainting, i.e., to remove specified objects from an input video. Many methods have been developed for the problem so far, in which there is a trade-off between image quality and computational time. There was no method that can generate high-quality images in video rate. The key to video inpainting is how to establish correspondences from scene regions occluded in a frame to those observed in other frames. To break the trade-off, we propose to use CNNs as a solution to this key problem. We extend existing CNNs for the standard task of optical flow estimation to be able to estimate the flow of occluded background regions. The extension includes augmentation of their architecture and changes of their training method. We experimentally show that this approach works well despite its simplicity, and that a simple video inpainting method integrating this flow estimator runs in video rate (e.g., 32fps for 832 × 448 pixel videos on a standard PC with a GPU) while achieving image quality close to the state-of-the-art.\",\"PeriodicalId\":436637,\"journal\":{\"name\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2019.00170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了视频补画问题,即从输入视频中去除指定的对象。到目前为止,已经开发了许多方法来解决这个问题,其中需要在图像质量和计算时间之间进行权衡。在视频速率下,没有一种方法可以生成高质量的图像。视频绘画的关键是如何建立一帧中被遮挡的场景区域与其他帧中观察到的场景区域的对应关系。为了打破这种权衡,我们建议使用cnn作为解决这个关键问题的方法。我们将现有的cnn扩展到光流估计的标准任务,使其能够估计被遮挡背景区域的流量。扩展包括他们的架构的增强和他们的训练方法的变化。我们的实验表明,尽管这种方法很简单,但效果很好,并且集成该流量估计器的简单视频绘制方法可以在视频速率下运行(例如,在带有GPU的标准PC上,832 × 448像素视频的32fps),同时获得接近最先进的图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video-Rate Video Inpainting
This paper considers the problem of video inpainting, i.e., to remove specified objects from an input video. Many methods have been developed for the problem so far, in which there is a trade-off between image quality and computational time. There was no method that can generate high-quality images in video rate. The key to video inpainting is how to establish correspondences from scene regions occluded in a frame to those observed in other frames. To break the trade-off, we propose to use CNNs as a solution to this key problem. We extend existing CNNs for the standard task of optical flow estimation to be able to estimate the flow of occluded background regions. The extension includes augmentation of their architecture and changes of their training method. We experimentally show that this approach works well despite its simplicity, and that a simple video inpainting method integrating this flow estimator runs in video rate (e.g., 32fps for 832 × 448 pixel videos on a standard PC with a GPU) while achieving image quality close to the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信