通过深度学习支持的增强视频界面进行多视角人机交互

Grimaldo Silva, K. Rekik, A. Kanso, L. Schnitman
{"title":"通过深度学习支持的增强视频界面进行多视角人机交互","authors":"Grimaldo Silva, K. Rekik, A. Kanso, L. Schnitman","doi":"10.1109/RO-MAN53752.2022.9900671","DOIUrl":null,"url":null,"abstract":"As the world surpasses a billion cameras [1] and their coverage of the public and private spaces increases, the possibility of using their visual feed to not just observe, but to command robots through their video becomes an ever more interesting prospect. Our work deals with multi-perspective interaction, where a robot autonomously maps image pixels from reachable cameras to positions on its global coordinate space. This enables an operator to send the robot to specific positions in a camera with no manual calibration. Furthermore, robot information, such as planned paths, can be used to augment all affected camera images with an overlayed projection of their visual information. The robustness of this approach has been validated in both simulated and real world experiments.","PeriodicalId":250997,"journal":{"name":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-perspective human robot interaction through an augmented video interface supported by deep learning\",\"authors\":\"Grimaldo Silva, K. Rekik, A. Kanso, L. Schnitman\",\"doi\":\"10.1109/RO-MAN53752.2022.9900671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the world surpasses a billion cameras [1] and their coverage of the public and private spaces increases, the possibility of using their visual feed to not just observe, but to command robots through their video becomes an ever more interesting prospect. Our work deals with multi-perspective interaction, where a robot autonomously maps image pixels from reachable cameras to positions on its global coordinate space. This enables an operator to send the robot to specific positions in a camera with no manual calibration. Furthermore, robot information, such as planned paths, can be used to augment all affected camera images with an overlayed projection of their visual information. The robustness of this approach has been validated in both simulated and real world experiments.\",\"PeriodicalId\":250997,\"journal\":{\"name\":\"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RO-MAN53752.2022.9900671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN53752.2022.9900671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着世界上的摄像机数量超过10亿个[1],它们对公共和私人空间的覆盖范围也在增加,利用它们的视觉反馈不仅可以观察,还可以通过它们的视频来指挥机器人的可能性变得越来越有趣。我们的工作涉及多视角交互,其中机器人自主地将可达摄像机的图像像素映射到其全局坐标空间上的位置。这使得操作员可以将机器人发送到相机中的特定位置,而无需手动校准。此外,机器人的信息,如规划的路径,可以用来增强所有受影响的相机图像与他们的视觉信息的叠加投影。该方法的鲁棒性已在模拟和现实世界的实验中得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-perspective human robot interaction through an augmented video interface supported by deep learning
As the world surpasses a billion cameras [1] and their coverage of the public and private spaces increases, the possibility of using their visual feed to not just observe, but to command robots through their video becomes an ever more interesting prospect. Our work deals with multi-perspective interaction, where a robot autonomously maps image pixels from reachable cameras to positions on its global coordinate space. This enables an operator to send the robot to specific positions in a camera with no manual calibration. Furthermore, robot information, such as planned paths, can be used to augment all affected camera images with an overlayed projection of their visual information. The robustness of this approach has been validated in both simulated and real world experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信