水滴撞击微图案亲水表面后的射流起爆

Anayet Ullah Siddique, F. Zhao, M. Weislogel, H. Tan
{"title":"水滴撞击微图案亲水表面后的射流起爆","authors":"Anayet Ullah Siddique, F. Zhao, M. Weislogel, H. Tan","doi":"10.1115/imece2019-11500","DOIUrl":null,"url":null,"abstract":"\n Droplet-wall impacts are well known to produce a wide variety of outcomes such as spreading, splashing, jetting, receding, and rebounding from hydrophobic and superhydrophobic surfaces. In this work, we focus on the growth of jets that form during the partial recoil of liquid droplets that impinge upon hydrophilic substrates composed of cylindrical micro-pillars of various dimensions and distributions (i.e., height, width, pillar spacing, etc.). Micro-pillars are fabricated on the hydrophilic silicon wafers by standard microfabrication processes, including metal etch mask patterning by photolithography, metal deposition, and lift-off to achieve the designed pillar shapes and spacing, and followed by dry etching for various pillar heights. Micrometer-sized drops of glycerol mixtures impacting micro-structured wafers are investigated using high-speed video photography. Impact velocities are varied to observe the influence of Weber number on the dynamic properties of the rebounding jet and jet initiation time, as well as whether or not the jet detaches ejecting satellite droplets normal to the substrate surface. The specific influence of the micro-patterned surfaces on maximum spreading, jet formation, jet tip velocity, and jet ejection is characterized. We find that the micro-patterned substrates have a significant effect on the behavior of the drop impact and jetting mechanism. From our experiments, we find that jet velocity is approximately 4 times that of the drop impact velocity. The jet formation time is shown to follow the capillary time scale as (ρDi3/σ)½ (where ρ, Di, and σ are density, initial droplet diameter, and surface tension, respectively).","PeriodicalId":229616,"journal":{"name":"Volume 7: Fluids Engineering","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jet Initiation After Drop Impact on Micropatterned Hydrophilic Surfaces\",\"authors\":\"Anayet Ullah Siddique, F. Zhao, M. Weislogel, H. Tan\",\"doi\":\"10.1115/imece2019-11500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Droplet-wall impacts are well known to produce a wide variety of outcomes such as spreading, splashing, jetting, receding, and rebounding from hydrophobic and superhydrophobic surfaces. In this work, we focus on the growth of jets that form during the partial recoil of liquid droplets that impinge upon hydrophilic substrates composed of cylindrical micro-pillars of various dimensions and distributions (i.e., height, width, pillar spacing, etc.). Micro-pillars are fabricated on the hydrophilic silicon wafers by standard microfabrication processes, including metal etch mask patterning by photolithography, metal deposition, and lift-off to achieve the designed pillar shapes and spacing, and followed by dry etching for various pillar heights. Micrometer-sized drops of glycerol mixtures impacting micro-structured wafers are investigated using high-speed video photography. Impact velocities are varied to observe the influence of Weber number on the dynamic properties of the rebounding jet and jet initiation time, as well as whether or not the jet detaches ejecting satellite droplets normal to the substrate surface. The specific influence of the micro-patterned surfaces on maximum spreading, jet formation, jet tip velocity, and jet ejection is characterized. We find that the micro-patterned substrates have a significant effect on the behavior of the drop impact and jetting mechanism. From our experiments, we find that jet velocity is approximately 4 times that of the drop impact velocity. The jet formation time is shown to follow the capillary time scale as (ρDi3/σ)½ (where ρ, Di, and σ are density, initial droplet diameter, and surface tension, respectively).\",\"PeriodicalId\":229616,\"journal\":{\"name\":\"Volume 7: Fluids Engineering\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: Fluids Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-11500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,液滴壁撞击会产生各种各样的结果,如扩散、飞溅、喷射、后退和从疏水和超疏水表面反弹。在这项工作中,我们重点研究了液滴撞击由不同尺寸和分布(即高度、宽度、柱间距等)的圆柱形微柱组成的亲水基板时,在部分反冲过程中形成的射流的生长。微柱是通过标准的微加工工艺在亲水硅片上制造的,包括光刻金属蚀刻掩模图案,金属沉积和提升,以实现设计的柱形状和间距,然后进行各种柱高度的干蚀刻。采用高速视频摄影技术研究了微米级甘油混合物液滴对微结构硅片的影响。通过改变冲击速度,观察韦伯数对弹跳射流动力学特性和射流起爆时间的影响,以及射流是否脱离,喷出的卫星液滴垂直于基材表面。研究了微图案化表面对最大扩散、射流形成、射流尖端速度和射流喷射的具体影响。研究发现,微图案化衬底对液滴冲击和喷射机理有显著影响。从我们的实验中,我们发现喷射速度大约是落点撞击速度的4倍。射流形成时间符合毛细管时间尺度为(ρ di3 /σ)½(其中ρ、Di和σ分别为密度、初始液滴直径和表面张力)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jet Initiation After Drop Impact on Micropatterned Hydrophilic Surfaces
Droplet-wall impacts are well known to produce a wide variety of outcomes such as spreading, splashing, jetting, receding, and rebounding from hydrophobic and superhydrophobic surfaces. In this work, we focus on the growth of jets that form during the partial recoil of liquid droplets that impinge upon hydrophilic substrates composed of cylindrical micro-pillars of various dimensions and distributions (i.e., height, width, pillar spacing, etc.). Micro-pillars are fabricated on the hydrophilic silicon wafers by standard microfabrication processes, including metal etch mask patterning by photolithography, metal deposition, and lift-off to achieve the designed pillar shapes and spacing, and followed by dry etching for various pillar heights. Micrometer-sized drops of glycerol mixtures impacting micro-structured wafers are investigated using high-speed video photography. Impact velocities are varied to observe the influence of Weber number on the dynamic properties of the rebounding jet and jet initiation time, as well as whether or not the jet detaches ejecting satellite droplets normal to the substrate surface. The specific influence of the micro-patterned surfaces on maximum spreading, jet formation, jet tip velocity, and jet ejection is characterized. We find that the micro-patterned substrates have a significant effect on the behavior of the drop impact and jetting mechanism. From our experiments, we find that jet velocity is approximately 4 times that of the drop impact velocity. The jet formation time is shown to follow the capillary time scale as (ρDi3/σ)½ (where ρ, Di, and σ are density, initial droplet diameter, and surface tension, respectively).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信