机器学习和人工智能寻址卫星转发器畸变的高级数学建模

T. Nguyen
{"title":"机器学习和人工智能寻址卫星转发器畸变的高级数学建模","authors":"T. Nguyen","doi":"10.1109/IGESSC50231.2020.9285157","DOIUrl":null,"url":null,"abstract":"This paper describes innovative frameworks and associated mathematical models using Machine Learning and Artificial Intelligent (ML-AI) technology to address signal distortions caused by the satellite transponder (TXDER) and related operational conditions. The operating conditions include unknown Input Power Back-Off (IPBO) and unknown TXDER operating temperature due to satellite exposure to the space environment. The paper also presents and discusses an End-to-End Satellite System and Mathematical Model (E2E-SSM2) that can be used for generating training data and demonstrating of the proposed ML-AI frameworks.","PeriodicalId":437709,"journal":{"name":"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Mathematical Modeling of Machine Learning and Artificial Intelligent Addressing Satellite Transponder Distortions\",\"authors\":\"T. Nguyen\",\"doi\":\"10.1109/IGESSC50231.2020.9285157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes innovative frameworks and associated mathematical models using Machine Learning and Artificial Intelligent (ML-AI) technology to address signal distortions caused by the satellite transponder (TXDER) and related operational conditions. The operating conditions include unknown Input Power Back-Off (IPBO) and unknown TXDER operating temperature due to satellite exposure to the space environment. The paper also presents and discusses an End-to-End Satellite System and Mathematical Model (E2E-SSM2) that can be used for generating training data and demonstrating of the proposed ML-AI frameworks.\",\"PeriodicalId\":437709,\"journal\":{\"name\":\"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGESSC50231.2020.9285157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGESSC50231.2020.9285157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了使用机器学习和人工智能(ML-AI)技术的创新框架和相关数学模型,以解决由卫星转发器(TXDER)和相关操作条件引起的信号失真。由于卫星暴露在空间环境中,其工作条件包括未知的输入功率回退(IPBO)和未知的TXDER工作温度。本文还介绍并讨论了端到端卫星系统和数学模型(E2E-SSM2),可用于生成训练数据和演示所提出的ML-AI框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Mathematical Modeling of Machine Learning and Artificial Intelligent Addressing Satellite Transponder Distortions
This paper describes innovative frameworks and associated mathematical models using Machine Learning and Artificial Intelligent (ML-AI) technology to address signal distortions caused by the satellite transponder (TXDER) and related operational conditions. The operating conditions include unknown Input Power Back-Off (IPBO) and unknown TXDER operating temperature due to satellite exposure to the space environment. The paper also presents and discusses an End-to-End Satellite System and Mathematical Model (E2E-SSM2) that can be used for generating training data and demonstrating of the proposed ML-AI frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信