融合描述符在图像检索中的综合分析

Ganesh A Siva Raja, Maddi Siddart, S. Kashyap, P. Ramadevi
{"title":"融合描述符在图像检索中的综合分析","authors":"Ganesh A Siva Raja, Maddi Siddart, S. Kashyap, P. Ramadevi","doi":"10.1109/CENTCON52345.2021.9687860","DOIUrl":null,"url":null,"abstract":"Content Based Image Retrieval (CBIR) systems are used to retrieve similar images to the query image from a large database. This paper represents a CBIR model which has been tested with multiple feature descriptors such as Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), Binary Robust Independent Elementary Features (BRIEF), Oriented FAST and rotated BRIEF (ORB) and combinations of them. Multiple linguistic processing techniques such as Bag of Words and Topic modelling have been used for optimizing the image retrieval and making them meaningful based on human semantics. Using a combination of descriptors and Latent Dirichlet Allocation, our model has proven to yield high precision when tested against standard image retrieval data set.","PeriodicalId":103865,"journal":{"name":"2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Analysis of Fused Descriptors for Image Retrieval\",\"authors\":\"Ganesh A Siva Raja, Maddi Siddart, S. Kashyap, P. Ramadevi\",\"doi\":\"10.1109/CENTCON52345.2021.9687860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content Based Image Retrieval (CBIR) systems are used to retrieve similar images to the query image from a large database. This paper represents a CBIR model which has been tested with multiple feature descriptors such as Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), Binary Robust Independent Elementary Features (BRIEF), Oriented FAST and rotated BRIEF (ORB) and combinations of them. Multiple linguistic processing techniques such as Bag of Words and Topic modelling have been used for optimizing the image retrieval and making them meaningful based on human semantics. Using a combination of descriptors and Latent Dirichlet Allocation, our model has proven to yield high precision when tested against standard image retrieval data set.\",\"PeriodicalId\":103865,\"journal\":{\"name\":\"2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CENTCON52345.2021.9687860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENTCON52345.2021.9687860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于内容的图像检索(CBIR)系统用于从大型数据库中检索与查询图像相似的图像。提出了一种基于尺度不变特征变换(SIFT)、加速鲁棒特征(SURF)、二值鲁棒独立基本特征(BRIEF)、定向FAST和旋转BRIEF (ORB)及其组合的CBIR模型。多种语言处理技术,如词袋和主题建模,已被用于优化图像检索,使其具有基于人类语义的意义。使用描述符和潜在狄利克雷分配的组合,我们的模型在对标准图像检索数据集进行测试时已被证明具有很高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive Analysis of Fused Descriptors for Image Retrieval
Content Based Image Retrieval (CBIR) systems are used to retrieve similar images to the query image from a large database. This paper represents a CBIR model which has been tested with multiple feature descriptors such as Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), Binary Robust Independent Elementary Features (BRIEF), Oriented FAST and rotated BRIEF (ORB) and combinations of them. Multiple linguistic processing techniques such as Bag of Words and Topic modelling have been used for optimizing the image retrieval and making them meaningful based on human semantics. Using a combination of descriptors and Latent Dirichlet Allocation, our model has proven to yield high precision when tested against standard image retrieval data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信