Yu-Ting Chen, J. Cong, Zhenman Fang, Jie Lei, Peng Wei
{"title":"当Spark遇到fpga:下一代DNA测序加速的案例研究","authors":"Yu-Ting Chen, J. Cong, Zhenman Fang, Jie Lei, Peng Wei","doi":"10.1109/FCCM.2016.18","DOIUrl":null,"url":null,"abstract":"FPGA-enabled datacenters have shown great potential for providing performance and energy efficiency improvement, and captured a great amount of attention from both academia and industry. In this paper we aim to answer one key question: how can we efficiently integrate FPGAs into state-of-the-art big-data computing frameworks? Although very important, this problem has not been well studied, especially for the integration of fine-grained FPGA accelerators that have short execution time but will be invoked many times. To provide a generalized methodology and insight for efficient integration, we conduct an in-depth analysis of challenges and corresponding solutions of integration at single-thread, single-node multi-thread, and multi-node levels. With a step-by-step case study for the next-generation DNA sequencing application, we demonstrate how a straightforward integration with 1000x slowdown can be tuned into an efficient integration with 2.6x overall system speedup and 2.4x energy efficiency improvement.","PeriodicalId":113498,"journal":{"name":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"When Spark Meets FPGAs: A Case Study for Next-Generation DNA Sequencing Acceleration\",\"authors\":\"Yu-Ting Chen, J. Cong, Zhenman Fang, Jie Lei, Peng Wei\",\"doi\":\"10.1109/FCCM.2016.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FPGA-enabled datacenters have shown great potential for providing performance and energy efficiency improvement, and captured a great amount of attention from both academia and industry. In this paper we aim to answer one key question: how can we efficiently integrate FPGAs into state-of-the-art big-data computing frameworks? Although very important, this problem has not been well studied, especially for the integration of fine-grained FPGA accelerators that have short execution time but will be invoked many times. To provide a generalized methodology and insight for efficient integration, we conduct an in-depth analysis of challenges and corresponding solutions of integration at single-thread, single-node multi-thread, and multi-node levels. With a step-by-step case study for the next-generation DNA sequencing application, we demonstrate how a straightforward integration with 1000x slowdown can be tuned into an efficient integration with 2.6x overall system speedup and 2.4x energy efficiency improvement.\",\"PeriodicalId\":113498,\"journal\":{\"name\":\"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2016.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2016.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
When Spark Meets FPGAs: A Case Study for Next-Generation DNA Sequencing Acceleration
FPGA-enabled datacenters have shown great potential for providing performance and energy efficiency improvement, and captured a great amount of attention from both academia and industry. In this paper we aim to answer one key question: how can we efficiently integrate FPGAs into state-of-the-art big-data computing frameworks? Although very important, this problem has not been well studied, especially for the integration of fine-grained FPGA accelerators that have short execution time but will be invoked many times. To provide a generalized methodology and insight for efficient integration, we conduct an in-depth analysis of challenges and corresponding solutions of integration at single-thread, single-node multi-thread, and multi-node levels. With a step-by-step case study for the next-generation DNA sequencing application, we demonstrate how a straightforward integration with 1000x slowdown can be tuned into an efficient integration with 2.6x overall system speedup and 2.4x energy efficiency improvement.