使用开放计算语言的并行离散小波变换:性能和可移植性研究

Bharatkumar Sharma, N. Vydyanathan
{"title":"使用开放计算语言的并行离散小波变换:性能和可移植性研究","authors":"Bharatkumar Sharma, N. Vydyanathan","doi":"10.1109/IPDPSW.2010.5470830","DOIUrl":null,"url":null,"abstract":"The discrete wavelet transform (DWT) is a powerful signal processing technique used in the JPEG 2000 image compression standard. The multi-resolution sub-band encoding provided by DWT allows for higher compression ratios, avoids blocking artifacts and enables progressive transmission of images. However, these advantages come at the expense of additional computational complexity. Achieving real-time or interactive compression/de-compression speeds, therefore, requires a fast implementation of DWT that leverages emerging parallel hardware systems. In this paper, we develop an optimized parallel implementation of the lifting-based DWT algorithm using the recently proposed Open Computing Language (OpenCL). OpenCL is a standard for cross-platform parallel programming of heterogeneous systems comprising of multi-core CPUs, GPUs and other accelerators. We explore the potential of OpenCL in accelerating the DWT computation and analyze the programmability, portability and performance aspects of this language. Our experimental analysis is done using NVIDIA's and AMD's drivers that support OpenCL.","PeriodicalId":329280,"journal":{"name":"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Parallel discrete wavelet transform using the Open Computing Language: a performance and portability study\",\"authors\":\"Bharatkumar Sharma, N. Vydyanathan\",\"doi\":\"10.1109/IPDPSW.2010.5470830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discrete wavelet transform (DWT) is a powerful signal processing technique used in the JPEG 2000 image compression standard. The multi-resolution sub-band encoding provided by DWT allows for higher compression ratios, avoids blocking artifacts and enables progressive transmission of images. However, these advantages come at the expense of additional computational complexity. Achieving real-time or interactive compression/de-compression speeds, therefore, requires a fast implementation of DWT that leverages emerging parallel hardware systems. In this paper, we develop an optimized parallel implementation of the lifting-based DWT algorithm using the recently proposed Open Computing Language (OpenCL). OpenCL is a standard for cross-platform parallel programming of heterogeneous systems comprising of multi-core CPUs, GPUs and other accelerators. We explore the potential of OpenCL in accelerating the DWT computation and analyze the programmability, portability and performance aspects of this language. Our experimental analysis is done using NVIDIA's and AMD's drivers that support OpenCL.\",\"PeriodicalId\":329280,\"journal\":{\"name\":\"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2010.5470830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2010.5470830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

离散小波变换(DWT)是JPEG 2000图像压缩标准中使用的一种功能强大的信号处理技术。DWT提供的多分辨率子带编码允许更高的压缩比,避免阻塞伪影,并允许图像的渐进传输。然而,这些优势是以额外的计算复杂性为代价的。因此,实现实时或交互式压缩/解压缩速度需要利用新兴并行硬件系统的DWT快速实现。在本文中,我们使用最近提出的开放计算语言(OpenCL)开发了基于提升的DWT算法的优化并行实现。OpenCL是由多核cpu、gpu和其他加速器组成的异构系统的跨平台并行编程标准。我们探索了OpenCL在加速DWT计算方面的潜力,并分析了该语言的可编程性、可移植性和性能方面。我们的实验分析是使用支持OpenCL的NVIDIA和AMD驱动程序完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel discrete wavelet transform using the Open Computing Language: a performance and portability study
The discrete wavelet transform (DWT) is a powerful signal processing technique used in the JPEG 2000 image compression standard. The multi-resolution sub-band encoding provided by DWT allows for higher compression ratios, avoids blocking artifacts and enables progressive transmission of images. However, these advantages come at the expense of additional computational complexity. Achieving real-time or interactive compression/de-compression speeds, therefore, requires a fast implementation of DWT that leverages emerging parallel hardware systems. In this paper, we develop an optimized parallel implementation of the lifting-based DWT algorithm using the recently proposed Open Computing Language (OpenCL). OpenCL is a standard for cross-platform parallel programming of heterogeneous systems comprising of multi-core CPUs, GPUs and other accelerators. We explore the potential of OpenCL in accelerating the DWT computation and analyze the programmability, portability and performance aspects of this language. Our experimental analysis is done using NVIDIA's and AMD's drivers that support OpenCL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信