{"title":"控制激光混沌","authors":"P. Glorieux","doi":"10.1002/3527607455.CH19","DOIUrl":null,"url":null,"abstract":"In 1990 Ott, Grebogi and Yorke described an attractive method (OGY) whereby small time-dependent perturbation applied to a chaotic system allowed to stabilize unstable periodic orbits[1]. This method is applicable to experimental situations in which a priori analytical knowledge of the system is not available[2,3]. Their method assumes the dynamics of the system can be represented as arising from a nonlinear map (e.g., a return map). The iterates are then given by Xn+1 = F(Xn,p), where p is some accessible parameter of the system. To control chaotic dynamics one only needs to learn the local dynamics around the desired unstable periodic orbit (e.g., a fixed point Xn=XF) on the nonlinear map : especially, the derivatives with respect to p of the orbit location. When the motion is near the periodic orbit(Xn#XF), small appropriate temporal perturbations of the control parameter p allow to hold the motion on its unstable periodic orbits.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling Laser Chaos\",\"authors\":\"P. Glorieux\",\"doi\":\"10.1002/3527607455.CH19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1990 Ott, Grebogi and Yorke described an attractive method (OGY) whereby small time-dependent perturbation applied to a chaotic system allowed to stabilize unstable periodic orbits[1]. This method is applicable to experimental situations in which a priori analytical knowledge of the system is not available[2,3]. Their method assumes the dynamics of the system can be represented as arising from a nonlinear map (e.g., a return map). The iterates are then given by Xn+1 = F(Xn,p), where p is some accessible parameter of the system. To control chaotic dynamics one only needs to learn the local dynamics around the desired unstable periodic orbit (e.g., a fixed point Xn=XF) on the nonlinear map : especially, the derivatives with respect to p of the orbit location. When the motion is near the periodic orbit(Xn#XF), small appropriate temporal perturbations of the control parameter p allow to hold the motion on its unstable periodic orbits.\",\"PeriodicalId\":441335,\"journal\":{\"name\":\"Nonlinear Dynamics in Optical Systems\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Dynamics in Optical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/3527607455.CH19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics in Optical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/3527607455.CH19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In 1990 Ott, Grebogi and Yorke described an attractive method (OGY) whereby small time-dependent perturbation applied to a chaotic system allowed to stabilize unstable periodic orbits[1]. This method is applicable to experimental situations in which a priori analytical knowledge of the system is not available[2,3]. Their method assumes the dynamics of the system can be represented as arising from a nonlinear map (e.g., a return map). The iterates are then given by Xn+1 = F(Xn,p), where p is some accessible parameter of the system. To control chaotic dynamics one only needs to learn the local dynamics around the desired unstable periodic orbit (e.g., a fixed point Xn=XF) on the nonlinear map : especially, the derivatives with respect to p of the orbit location. When the motion is near the periodic orbit(Xn#XF), small appropriate temporal perturbations of the control parameter p allow to hold the motion on its unstable periodic orbits.