Robson Mayer, Menaouar Berrehil El Kattel, S. Oliveira
{"title":"用于微电网直流母线调节的耦合电感双向dc-dc变换器","authors":"Robson Mayer, Menaouar Berrehil El Kattel, S. Oliveira","doi":"10.18618/rep.2020.3.0007","DOIUrl":null,"url":null,"abstract":"– This paper presents a theoretical analysis and the experimental results of the bidirectional coupled inductor dc-dc converter for dc-bus voltage regulation and power compensation in dc-microgrid applications. In dc-microgrids, a power distribution system requires a bidirectional converter to control the power flow between dc-bus and batteries. Furthermore, the dc-bus needs to be kept stabilized within certain limits and the converter handles a large range of voltage variation in the accumulators. The proposed topology is also relatively feasible for low-input-voltage applications for interfacing energy storage elements, such as batteries, ultracapacitors with the high voltage dc-bus in electric vehicles. The converter allows greater voltage gain compared to classic non-isolated topologies and can better deal with the wide range of voltage variation imposed by the source/load. The operation principles, the DC voltage gain, the design of the filters, the voltage/current stresses and a comparison are discussed. The experimental results confirmed and validated the theoretical study as well as the converter performance so that the measurements performed obtained from a 600 W laboratory prototype.","PeriodicalId":149812,"journal":{"name":"Eletrônica de Potência","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BIDIRECTIONAL DC-DC CONVERTER WITH COUPLED INDUCTOR FOR DC-BUS REGULATION IN MICROGRID APPLICATIONS\",\"authors\":\"Robson Mayer, Menaouar Berrehil El Kattel, S. Oliveira\",\"doi\":\"10.18618/rep.2020.3.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"– This paper presents a theoretical analysis and the experimental results of the bidirectional coupled inductor dc-dc converter for dc-bus voltage regulation and power compensation in dc-microgrid applications. In dc-microgrids, a power distribution system requires a bidirectional converter to control the power flow between dc-bus and batteries. Furthermore, the dc-bus needs to be kept stabilized within certain limits and the converter handles a large range of voltage variation in the accumulators. The proposed topology is also relatively feasible for low-input-voltage applications for interfacing energy storage elements, such as batteries, ultracapacitors with the high voltage dc-bus in electric vehicles. The converter allows greater voltage gain compared to classic non-isolated topologies and can better deal with the wide range of voltage variation imposed by the source/load. The operation principles, the DC voltage gain, the design of the filters, the voltage/current stresses and a comparison are discussed. The experimental results confirmed and validated the theoretical study as well as the converter performance so that the measurements performed obtained from a 600 W laboratory prototype.\",\"PeriodicalId\":149812,\"journal\":{\"name\":\"Eletrônica de Potência\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eletrônica de Potência\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18618/rep.2020.3.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eletrônica de Potência","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18618/rep.2020.3.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BIDIRECTIONAL DC-DC CONVERTER WITH COUPLED INDUCTOR FOR DC-BUS REGULATION IN MICROGRID APPLICATIONS
– This paper presents a theoretical analysis and the experimental results of the bidirectional coupled inductor dc-dc converter for dc-bus voltage regulation and power compensation in dc-microgrid applications. In dc-microgrids, a power distribution system requires a bidirectional converter to control the power flow between dc-bus and batteries. Furthermore, the dc-bus needs to be kept stabilized within certain limits and the converter handles a large range of voltage variation in the accumulators. The proposed topology is also relatively feasible for low-input-voltage applications for interfacing energy storage elements, such as batteries, ultracapacitors with the high voltage dc-bus in electric vehicles. The converter allows greater voltage gain compared to classic non-isolated topologies and can better deal with the wide range of voltage variation imposed by the source/load. The operation principles, the DC voltage gain, the design of the filters, the voltage/current stresses and a comparison are discussed. The experimental results confirmed and validated the theoretical study as well as the converter performance so that the measurements performed obtained from a 600 W laboratory prototype.