具有事后参与约束的最优顺序筛选

T. Heumann
{"title":"具有事后参与约束的最优顺序筛选","authors":"T. Heumann","doi":"10.2139/ssrn.3050014","DOIUrl":null,"url":null,"abstract":"We study a principal-agent model. The parties are symmetrically informed at first; the principal then designs the screening mechanism and, concurrently, the process by which the agent learns his type. Because the agent can opt out of the mechanism ex post, it must leave him with nonnegative rents ex post. We characterize the profit-maximizing mechanism. In that optimal mechanism, learning proceeds in continuous time and, at each moment, the agent learns a lower bound on his type. For each type, there is one of two possible outcomes: the type is allocated the efficient quantity or is left with zero rents ex post.","PeriodicalId":232169,"journal":{"name":"ERN: Other Microeconomics: Asymmetric & Private Information (Topic)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal Sequential Screening with Ex Post Participation Constraint\",\"authors\":\"T. Heumann\",\"doi\":\"10.2139/ssrn.3050014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a principal-agent model. The parties are symmetrically informed at first; the principal then designs the screening mechanism and, concurrently, the process by which the agent learns his type. Because the agent can opt out of the mechanism ex post, it must leave him with nonnegative rents ex post. We characterize the profit-maximizing mechanism. In that optimal mechanism, learning proceeds in continuous time and, at each moment, the agent learns a lower bound on his type. For each type, there is one of two possible outcomes: the type is allocated the efficient quantity or is left with zero rents ex post.\",\"PeriodicalId\":232169,\"journal\":{\"name\":\"ERN: Other Microeconomics: Asymmetric & Private Information (Topic)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Microeconomics: Asymmetric & Private Information (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3050014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Microeconomics: Asymmetric & Private Information (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3050014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了一个委托代理模型。当事人一开始是对称知情的;然后,委托人设计筛选机制,同时设计代理学习其类型的过程。因为代理可以选择事后退出该机制,所以事后必须给他留下非负租金。我们描述了利润最大化机制。在该最优机制中,学习在连续时间内进行,并且在每个时刻,智能体学习其类型的下界。对于每种类型,都有两种可能的结果之一:该类型被分配到有效数量,或者事后租金为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Sequential Screening with Ex Post Participation Constraint
We study a principal-agent model. The parties are symmetrically informed at first; the principal then designs the screening mechanism and, concurrently, the process by which the agent learns his type. Because the agent can opt out of the mechanism ex post, it must leave him with nonnegative rents ex post. We characterize the profit-maximizing mechanism. In that optimal mechanism, learning proceeds in continuous time and, at each moment, the agent learns a lower bound on his type. For each type, there is one of two possible outcomes: the type is allocated the efficient quantity or is left with zero rents ex post.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信