基于KNN和SVM技术的肌电信号时域分析

Prakash M. B., Harish H. M., Niranjana Kumara M.
{"title":"基于KNN和SVM技术的肌电信号时域分析","authors":"Prakash M. B., Harish H. M., Niranjana Kumara M.","doi":"10.37394/232014.2022.18.10","DOIUrl":null,"url":null,"abstract":"The EMG signals that have been processed can mimic human movements. For this study, raw EMG data obtained when the hands are in repose (rest), in a clasp, and when the wrist is buckled and stretched were used to categorise four distinct forms of hand gestures using a MATLAB-based intelligent framework (open access data set). Statistical-time-domain features are applied to sort various hand gestures in this investigation. The K-Nearest-Neighbor (KNN) and Support-Vector-Machine (SVM) classifiers are used for classification and comparison. Furthermore, our method outperforms a state-of-the-art method on other data sets of hand gestures.","PeriodicalId":305800,"journal":{"name":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Domain Analysis of EMG Signals using KNN and SVM Techniques\",\"authors\":\"Prakash M. B., Harish H. M., Niranjana Kumara M.\",\"doi\":\"10.37394/232014.2022.18.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The EMG signals that have been processed can mimic human movements. For this study, raw EMG data obtained when the hands are in repose (rest), in a clasp, and when the wrist is buckled and stretched were used to categorise four distinct forms of hand gestures using a MATLAB-based intelligent framework (open access data set). Statistical-time-domain features are applied to sort various hand gestures in this investigation. The K-Nearest-Neighbor (KNN) and Support-Vector-Machine (SVM) classifiers are used for classification and comparison. Furthermore, our method outperforms a state-of-the-art method on other data sets of hand gestures.\",\"PeriodicalId\":305800,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON SIGNAL PROCESSING\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON SIGNAL PROCESSING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232014.2022.18.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232014.2022.18.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经过处理的肌电图信号可以模拟人类的运动。在这项研究中,使用基于matlab的智能框架(开放获取数据集),使用手处于休息状态、扣环状态以及手腕弯曲和伸展状态时获得的原始肌电图数据,对四种不同形式的手势进行分类。在本研究中,统计时域特征应用于各种手势的分类。使用k -最近邻(KNN)和支持向量机(SVM)分类器进行分类和比较。此外,我们的方法在其他手势数据集上优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Domain Analysis of EMG Signals using KNN and SVM Techniques
The EMG signals that have been processed can mimic human movements. For this study, raw EMG data obtained when the hands are in repose (rest), in a clasp, and when the wrist is buckled and stretched were used to categorise four distinct forms of hand gestures using a MATLAB-based intelligent framework (open access data set). Statistical-time-domain features are applied to sort various hand gestures in this investigation. The K-Nearest-Neighbor (KNN) and Support-Vector-Machine (SVM) classifiers are used for classification and comparison. Furthermore, our method outperforms a state-of-the-art method on other data sets of hand gestures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信