{"title":"碳纳米管作为微电子冷却微通道散热片的建模","authors":"L. Ekstrand, Z. Mo, Yan Zhang, J. Liu","doi":"10.1109/POLYTR.2005.1596514","DOIUrl":null,"url":null,"abstract":"One potential solution to meet the increased demands of cooling in electronics is microchannels inside or on the inactive side of the chip with a fluid that carries away the heat. In this work Carbon Nanotubes (CNT) was used to further enhance cooling efficiency. Based on the promising result from experimental work on this kind of micro channels, finite element method, (FEMlab), was used to investigate the heat sink behaviour in detail. By introducing CNTs into the channel the heat transfer was enhanced. The thermal resistance of the micro channel was reduced from 0.98 K/W to about 0.43 K/W when fins were used. This is probably due to the fact that vortexes are introduced in the flow giving better mixing and that the contact area between water and hot surface is enlarged. However, the pressure drop of the channel with fins is high but could be reduced by an alternative design.","PeriodicalId":436133,"journal":{"name":"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Modelling of Carbon Nanotubes as Heat Sink Fins in Microchannels for Microelectronics Cooling\",\"authors\":\"L. Ekstrand, Z. Mo, Yan Zhang, J. Liu\",\"doi\":\"10.1109/POLYTR.2005.1596514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One potential solution to meet the increased demands of cooling in electronics is microchannels inside or on the inactive side of the chip with a fluid that carries away the heat. In this work Carbon Nanotubes (CNT) was used to further enhance cooling efficiency. Based on the promising result from experimental work on this kind of micro channels, finite element method, (FEMlab), was used to investigate the heat sink behaviour in detail. By introducing CNTs into the channel the heat transfer was enhanced. The thermal resistance of the micro channel was reduced from 0.98 K/W to about 0.43 K/W when fins were used. This is probably due to the fact that vortexes are introduced in the flow giving better mixing and that the contact area between water and hot surface is enlarged. However, the pressure drop of the channel with fins is high but could be reduced by an alternative design.\",\"PeriodicalId\":436133,\"journal\":{\"name\":\"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POLYTR.2005.1596514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POLYTR.2005.1596514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling of Carbon Nanotubes as Heat Sink Fins in Microchannels for Microelectronics Cooling
One potential solution to meet the increased demands of cooling in electronics is microchannels inside or on the inactive side of the chip with a fluid that carries away the heat. In this work Carbon Nanotubes (CNT) was used to further enhance cooling efficiency. Based on the promising result from experimental work on this kind of micro channels, finite element method, (FEMlab), was used to investigate the heat sink behaviour in detail. By introducing CNTs into the channel the heat transfer was enhanced. The thermal resistance of the micro channel was reduced from 0.98 K/W to about 0.43 K/W when fins were used. This is probably due to the fact that vortexes are introduced in the flow giving better mixing and that the contact area between water and hot surface is enlarged. However, the pressure drop of the channel with fins is high but could be reduced by an alternative design.