从无表情图像中估计细微的面部情绪变化

Arvin Valderrama, Takumi Taketomi, Chandra Louis, Tamami Sanbongi, Akihiro Kuno, Satoru Takahashi, Takeshi Nagata
{"title":"从无表情图像中估计细微的面部情绪变化","authors":"Arvin Valderrama, Takumi Taketomi, Chandra Louis, Tamami Sanbongi, Akihiro Kuno, Satoru Takahashi, Takeshi Nagata","doi":"10.1117/12.2690777","DOIUrl":null,"url":null,"abstract":"Subtle changes in emotional expressions occur more frequently compared to rich ones, which makes the evaluation of the emotional response of an individual challenging. In this study, we focus on the near-expressionless facial images, indicated with low arousal and valence value. We investigated the facial landmarks which are crucial in estimating subtle emotion through a novel feature selection method named Random Combination Selection with Iterative Step (RACSIS)1 . By combining appearance and geometrical features, while reducing the feature points up to 93.8%, the Mean Absolute Error (MAE) for Arousal = [-4 8], Valence = [-7 6], was reduced to 54.95% and 46.39% for the full emotional spectrum and the subtle emotion, respectively. We then tested the performance of the RACSIS to estimate the emotional response of participants undertaking audio-visual activities. We conclude that: 1. Appearance features played a greater role in reducing the MAE. 2. Feature selection (FS) by RACSIS achieved lower MAE values compared to correlation.","PeriodicalId":295011,"journal":{"name":"International Conference on Quality Control by Artificial Vision","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of subtle facial emotion changes from expressionless images\",\"authors\":\"Arvin Valderrama, Takumi Taketomi, Chandra Louis, Tamami Sanbongi, Akihiro Kuno, Satoru Takahashi, Takeshi Nagata\",\"doi\":\"10.1117/12.2690777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subtle changes in emotional expressions occur more frequently compared to rich ones, which makes the evaluation of the emotional response of an individual challenging. In this study, we focus on the near-expressionless facial images, indicated with low arousal and valence value. We investigated the facial landmarks which are crucial in estimating subtle emotion through a novel feature selection method named Random Combination Selection with Iterative Step (RACSIS)1 . By combining appearance and geometrical features, while reducing the feature points up to 93.8%, the Mean Absolute Error (MAE) for Arousal = [-4 8], Valence = [-7 6], was reduced to 54.95% and 46.39% for the full emotional spectrum and the subtle emotion, respectively. We then tested the performance of the RACSIS to estimate the emotional response of participants undertaking audio-visual activities. We conclude that: 1. Appearance features played a greater role in reducing the MAE. 2. Feature selection (FS) by RACSIS achieved lower MAE values compared to correlation.\",\"PeriodicalId\":295011,\"journal\":{\"name\":\"International Conference on Quality Control by Artificial Vision\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Quality Control by Artificial Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2690777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Quality Control by Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2690777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情绪表达的微妙变化比丰富的变化发生得更频繁,这使得对个人情绪反应的评估具有挑战性。在本研究中,我们关注的是低唤醒和低效价的近无表情面部图像。通过一种新的特征选择方法——随机组合选择迭代步骤(RACSIS)1,研究了对微妙情绪估计至关重要的面部特征。结合外观特征和几何特征,在减少93.8%特征点的同时,唤醒=[-4 8],效价=[-7 6]的平均绝对误差(MAE)在全情绪谱和微妙情绪谱上分别减少到54.95%和46.39%。然后,我们测试了RACSIS的性能,以估计参与视听活动的参与者的情绪反应。我们得出结论:1。外观特征对降低MAE的作用更大。2. 与相关性相比,RACSIS的特征选择(FS)获得了更低的MAE值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of subtle facial emotion changes from expressionless images
Subtle changes in emotional expressions occur more frequently compared to rich ones, which makes the evaluation of the emotional response of an individual challenging. In this study, we focus on the near-expressionless facial images, indicated with low arousal and valence value. We investigated the facial landmarks which are crucial in estimating subtle emotion through a novel feature selection method named Random Combination Selection with Iterative Step (RACSIS)1 . By combining appearance and geometrical features, while reducing the feature points up to 93.8%, the Mean Absolute Error (MAE) for Arousal = [-4 8], Valence = [-7 6], was reduced to 54.95% and 46.39% for the full emotional spectrum and the subtle emotion, respectively. We then tested the performance of the RACSIS to estimate the emotional response of participants undertaking audio-visual activities. We conclude that: 1. Appearance features played a greater role in reducing the MAE. 2. Feature selection (FS) by RACSIS achieved lower MAE values compared to correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信