基于cnn的人类V2皮层计算编码模型

Yicong Hu, Kai Qiao, Linyuan Wang, Li Tong, Chi Zhang, Hui Gao, Bin Yan
{"title":"基于cnn的人类V2皮层计算编码模型","authors":"Yicong Hu, Kai Qiao, Linyuan Wang, Li Tong, Chi Zhang, Hui Gao, Bin Yan","doi":"10.1109/iccia.2018.00037","DOIUrl":null,"url":null,"abstract":"The computation encoding models, used to predict human brain activity from natural image stimuli, can be performed as a function simulator of human vision information process. In the traditional computational encoding models for human V2 cortex, due to the lack of higher visual feature and information processing hierarchy, it is difficult to achieve expected predict performance. Here, activated by the properties of CNN, we trained a CNN as an encoding model for human V2 cortex, which can be trained for predicting stimuli-evoked response measured by functional magnetic resonance imaging. The results reveal that the CNN-based encoding model can achieve a higher performance, proves that CNN have advantages in encoding higher visual areas. This finding provides a new framework for the human vision encoding models and helps to further understand of the human vision mechanism from the computational point view.","PeriodicalId":297098,"journal":{"name":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CNN-Based Computational Encoding Model for Human V2 Cortex\",\"authors\":\"Yicong Hu, Kai Qiao, Linyuan Wang, Li Tong, Chi Zhang, Hui Gao, Bin Yan\",\"doi\":\"10.1109/iccia.2018.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computation encoding models, used to predict human brain activity from natural image stimuli, can be performed as a function simulator of human vision information process. In the traditional computational encoding models for human V2 cortex, due to the lack of higher visual feature and information processing hierarchy, it is difficult to achieve expected predict performance. Here, activated by the properties of CNN, we trained a CNN as an encoding model for human V2 cortex, which can be trained for predicting stimuli-evoked response measured by functional magnetic resonance imaging. The results reveal that the CNN-based encoding model can achieve a higher performance, proves that CNN have advantages in encoding higher visual areas. This finding provides a new framework for the human vision encoding models and helps to further understand of the human vision mechanism from the computational point view.\",\"PeriodicalId\":297098,\"journal\":{\"name\":\"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccia.2018.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccia.2018.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算编码模型用于从自然图像刺激中预测人脑活动,可以作为人类视觉信息处理的功能模拟器。在传统的人类V2皮层计算编码模型中,由于缺乏更高的视觉特征和信息处理层次,难以达到预期的预测性能。在此,利用CNN的特性激活,我们训练了一个CNN作为人类V2皮层的编码模型,该模型可以用于预测功能磁共振成像测量的刺激诱发反应。结果表明,基于CNN的编码模型可以达到更高的性能,证明CNN在编码更高视觉区域方面具有优势。这一发现为人类视觉编码模型提供了一个新的框架,有助于从计算的角度进一步理解人类视觉机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CNN-Based Computational Encoding Model for Human V2 Cortex
The computation encoding models, used to predict human brain activity from natural image stimuli, can be performed as a function simulator of human vision information process. In the traditional computational encoding models for human V2 cortex, due to the lack of higher visual feature and information processing hierarchy, it is difficult to achieve expected predict performance. Here, activated by the properties of CNN, we trained a CNN as an encoding model for human V2 cortex, which can be trained for predicting stimuli-evoked response measured by functional magnetic resonance imaging. The results reveal that the CNN-based encoding model can achieve a higher performance, proves that CNN have advantages in encoding higher visual areas. This finding provides a new framework for the human vision encoding models and helps to further understand of the human vision mechanism from the computational point view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信