英国电动汽车充电行为统计分析

J. Quirós-Tortós, L. Ochoa, Becky Lees
{"title":"英国电动汽车充电行为统计分析","authors":"J. Quirós-Tortós, L. Ochoa, Becky Lees","doi":"10.1109/ISGT-LA.2015.7381196","DOIUrl":null,"url":null,"abstract":"To truly quantify the impact of electric vehicles (EVs) on the electricity network and their potential interactions in the context of Smart Grids, it is crucial to understand their charging behavior. However, as EVs are yet to be widely adopted, these data are scarce. This work presents results of a thorough statistical analysis of the charging behavior of 221 real residential EV users (Nissan LEAF, i.e., 24kWh, 3.6 kW) spread across the UK and monitored over one year (68,000+ samples). Probability distribution functions (PDFs) of different charging features (e.g., start charging time) are produced for both weekdays and week-ends. Crucially, these unique PDFs can be used to create stochastic, realistic and detailed EV profiles to carry out impact and/or Smart Grid-related studies. Finally, the effects of the EV demand on future UK distribution networks are discussed.","PeriodicalId":345318,"journal":{"name":"2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":"{\"title\":\"A statistical analysis of EV charging behavior in the UK\",\"authors\":\"J. Quirós-Tortós, L. Ochoa, Becky Lees\",\"doi\":\"10.1109/ISGT-LA.2015.7381196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To truly quantify the impact of electric vehicles (EVs) on the electricity network and their potential interactions in the context of Smart Grids, it is crucial to understand their charging behavior. However, as EVs are yet to be widely adopted, these data are scarce. This work presents results of a thorough statistical analysis of the charging behavior of 221 real residential EV users (Nissan LEAF, i.e., 24kWh, 3.6 kW) spread across the UK and monitored over one year (68,000+ samples). Probability distribution functions (PDFs) of different charging features (e.g., start charging time) are produced for both weekdays and week-ends. Crucially, these unique PDFs can be used to create stochastic, realistic and detailed EV profiles to carry out impact and/or Smart Grid-related studies. Finally, the effects of the EV demand on future UK distribution networks are discussed.\",\"PeriodicalId\":345318,\"journal\":{\"name\":\"2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-LA.2015.7381196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-LA.2015.7381196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

摘要

为了真正量化电动汽车对电网的影响及其在智能电网环境下的潜在相互作用,了解电动汽车的充电行为至关重要。然而,由于电动汽车尚未被广泛采用,这些数据很少。这项工作展示了对英国221名真实住宅电动汽车用户(日产LEAF,即24kWh, 3.6 kW)的充电行为进行全面统计分析的结果,并对一年(68,000多个样本)进行了监测。生成工作日和周末不同充电特征(如开始充电时间)的概率分布函数(pdf)。至关重要的是,这些独特的pdf文件可用于创建随机,现实和详细的EV概况,以进行影响和/或智能电网相关研究。最后,讨论了电动汽车需求对未来英国配电网的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A statistical analysis of EV charging behavior in the UK
To truly quantify the impact of electric vehicles (EVs) on the electricity network and their potential interactions in the context of Smart Grids, it is crucial to understand their charging behavior. However, as EVs are yet to be widely adopted, these data are scarce. This work presents results of a thorough statistical analysis of the charging behavior of 221 real residential EV users (Nissan LEAF, i.e., 24kWh, 3.6 kW) spread across the UK and monitored over one year (68,000+ samples). Probability distribution functions (PDFs) of different charging features (e.g., start charging time) are produced for both weekdays and week-ends. Crucially, these unique PDFs can be used to create stochastic, realistic and detailed EV profiles to carry out impact and/or Smart Grid-related studies. Finally, the effects of the EV demand on future UK distribution networks are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信