Luis Pineda-Morales, Alexandru Costan, Gabriel Antoniu
{"title":"面向地理分布式云工作流的多站点元数据管理","authors":"Luis Pineda-Morales, Alexandru Costan, Gabriel Antoniu","doi":"10.1109/CLUSTER.2015.49","DOIUrl":null,"url":null,"abstract":"With their globally distributed datacenters, clouds now provide an opportunity to run complex large-scale applications on dynamically provisioned, networked and federated infrastructures. However, there is a lack of tools supporting data intensive applications across geographically distributed sites. For instance, scientific workflows which handle many small files can easily saturate state-of-the-art distributed filesystems based on centralized metadata servers (e.g. HDFS, PVFS). In this paper, we explore several alternative design strategies to efficiently support the execution of existing workflow engines across multi-site clouds, by reducing the cost of metadata operations. These strategies leverage workflow semantics in a 2-level metadata partitioning hierarchy that combines distribution and replication. The system was validated on the Microsoft Azure cloud across 4 EU and US datacenters. The experiments were conducted on 128 nodes using synthetic benchmarks and real-life applications. We observe as much as 28% gain in execution time for a parallel, geo-distributed real-world application (Montage) and up to 50% for a metadata-intensive synthetic benchmark, compared to a baseline centralized configuration.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Towards Multi-site Metadata Management for Geographically Distributed Cloud Workflows\",\"authors\":\"Luis Pineda-Morales, Alexandru Costan, Gabriel Antoniu\",\"doi\":\"10.1109/CLUSTER.2015.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With their globally distributed datacenters, clouds now provide an opportunity to run complex large-scale applications on dynamically provisioned, networked and federated infrastructures. However, there is a lack of tools supporting data intensive applications across geographically distributed sites. For instance, scientific workflows which handle many small files can easily saturate state-of-the-art distributed filesystems based on centralized metadata servers (e.g. HDFS, PVFS). In this paper, we explore several alternative design strategies to efficiently support the execution of existing workflow engines across multi-site clouds, by reducing the cost of metadata operations. These strategies leverage workflow semantics in a 2-level metadata partitioning hierarchy that combines distribution and replication. The system was validated on the Microsoft Azure cloud across 4 EU and US datacenters. The experiments were conducted on 128 nodes using synthetic benchmarks and real-life applications. We observe as much as 28% gain in execution time for a parallel, geo-distributed real-world application (Montage) and up to 50% for a metadata-intensive synthetic benchmark, compared to a baseline centralized configuration.\",\"PeriodicalId\":187042,\"journal\":{\"name\":\"2015 IEEE International Conference on Cluster Computing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTER.2015.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Multi-site Metadata Management for Geographically Distributed Cloud Workflows
With their globally distributed datacenters, clouds now provide an opportunity to run complex large-scale applications on dynamically provisioned, networked and federated infrastructures. However, there is a lack of tools supporting data intensive applications across geographically distributed sites. For instance, scientific workflows which handle many small files can easily saturate state-of-the-art distributed filesystems based on centralized metadata servers (e.g. HDFS, PVFS). In this paper, we explore several alternative design strategies to efficiently support the execution of existing workflow engines across multi-site clouds, by reducing the cost of metadata operations. These strategies leverage workflow semantics in a 2-level metadata partitioning hierarchy that combines distribution and replication. The system was validated on the Microsoft Azure cloud across 4 EU and US datacenters. The experiments were conducted on 128 nodes using synthetic benchmarks and real-life applications. We observe as much as 28% gain in execution time for a parallel, geo-distributed real-world application (Montage) and up to 50% for a metadata-intensive synthetic benchmark, compared to a baseline centralized configuration.