微电网系统聚类谐波的多尺度递归量化分析

Emilio Barocio O. C. Robles, J. Segundo, J. C. Olivares-Galvan, D. Guillen
{"title":"微电网系统聚类谐波的多尺度递归量化分析","authors":"Emilio Barocio O. C. Robles, J. Segundo, J. C. Olivares-Galvan, D. Guillen","doi":"10.1109/ROPEC.2017.8261617","DOIUrl":null,"url":null,"abstract":"In this paper, a Multi Scale Recurrence Quantification Analysis (MSRQA) method is proposed to clustering harmonics on microgrid systems. MSRQA is composed by the Variational Mode Decomposition algorithm and the Recurrence Quantification Analysis (RQA). MSRQA decomposes a signal into a finite number of Mono-Component Signals (MCSs), then a feature extraction is carry out by the RQA on each MCS. Finally, the identification of the optimal number of clusters based on the features extracted by RQA and the Davies-Bouldin index is carry out on the monitored microgrid system test signals. At the end an index based on the cluster information and the RQA measure is proposed to identify the harmonics present on the dynamic system behavior.","PeriodicalId":260469,"journal":{"name":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi scale recurrence quantification analysis for clustering harmonics on microgrid systems\",\"authors\":\"Emilio Barocio O. C. Robles, J. Segundo, J. C. Olivares-Galvan, D. Guillen\",\"doi\":\"10.1109/ROPEC.2017.8261617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Multi Scale Recurrence Quantification Analysis (MSRQA) method is proposed to clustering harmonics on microgrid systems. MSRQA is composed by the Variational Mode Decomposition algorithm and the Recurrence Quantification Analysis (RQA). MSRQA decomposes a signal into a finite number of Mono-Component Signals (MCSs), then a feature extraction is carry out by the RQA on each MCS. Finally, the identification of the optimal number of clusters based on the features extracted by RQA and the Davies-Bouldin index is carry out on the monitored microgrid system test signals. At the end an index based on the cluster information and the RQA measure is proposed to identify the harmonics present on the dynamic system behavior.\",\"PeriodicalId\":260469,\"journal\":{\"name\":\"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC.2017.8261617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2017.8261617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于多尺度递归量化分析(MSRQA)的微电网谐波聚类方法。MSRQA由变分模态分解算法和递归量化分析(RQA)组成。MSRQA将信号分解成有限数量的单分量信号(MCS),然后由RQA对每个MCS进行特征提取。最后,基于RQA提取的特征和Davies-Bouldin指数对监测的微电网系统测试信号进行最优聚类数量的识别。最后提出了一种基于聚类信息和RQA度量的指标来识别系统动态行为中的谐波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi scale recurrence quantification analysis for clustering harmonics on microgrid systems
In this paper, a Multi Scale Recurrence Quantification Analysis (MSRQA) method is proposed to clustering harmonics on microgrid systems. MSRQA is composed by the Variational Mode Decomposition algorithm and the Recurrence Quantification Analysis (RQA). MSRQA decomposes a signal into a finite number of Mono-Component Signals (MCSs), then a feature extraction is carry out by the RQA on each MCS. Finally, the identification of the optimal number of clusters based on the features extracted by RQA and the Davies-Bouldin index is carry out on the monitored microgrid system test signals. At the end an index based on the cluster information and the RQA measure is proposed to identify the harmonics present on the dynamic system behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信