{"title":"稀疏图和密集图的密集图划分","authors":"C. Bazgan, Katrin Casel, Pierre Cazals","doi":"10.4230/LIPIcs.SWAT.2022.13","DOIUrl":null,"url":null,"abstract":"We consider the problem of partitioning a graph into a non-fixed number of non-overlapping subgraphs of maximum density. The density of a partition is the sum of the densities of the subgraphs, where the density of a subgraph is its average degree, that is, the ratio of its number of edges and its number of vertices. This problem, called Dense Graph Partition, is known to be NP-hard on general graphs and polynomial-time solvable on trees, and polynomial-time 2-approximable. In this paper we study the restriction of Dense Graph Partition to particular sparse and dense graph classes. In particular, we prove that it is NP-hard on dense bipartite graphs as well as on cubic graphs. On dense graphs on $n$ vertices, it is polynomial-time solvable on graphs with minimum degree $n-3$ and NP-hard on $(n-4)$-regular graphs. We prove that it is polynomial-time $4/3$-approximable on cubic graphs and admits an efficient polynomial-time approximation scheme on graphs of minimum degree $n-t$ for any constant $t\\geq 4$.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dense Graph Partitioning on sparse and dense graphs\",\"authors\":\"C. Bazgan, Katrin Casel, Pierre Cazals\",\"doi\":\"10.4230/LIPIcs.SWAT.2022.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of partitioning a graph into a non-fixed number of non-overlapping subgraphs of maximum density. The density of a partition is the sum of the densities of the subgraphs, where the density of a subgraph is its average degree, that is, the ratio of its number of edges and its number of vertices. This problem, called Dense Graph Partition, is known to be NP-hard on general graphs and polynomial-time solvable on trees, and polynomial-time 2-approximable. In this paper we study the restriction of Dense Graph Partition to particular sparse and dense graph classes. In particular, we prove that it is NP-hard on dense bipartite graphs as well as on cubic graphs. On dense graphs on $n$ vertices, it is polynomial-time solvable on graphs with minimum degree $n-3$ and NP-hard on $(n-4)$-regular graphs. We prove that it is polynomial-time $4/3$-approximable on cubic graphs and admits an efficient polynomial-time approximation scheme on graphs of minimum degree $n-t$ for any constant $t\\\\geq 4$.\",\"PeriodicalId\":447445,\"journal\":{\"name\":\"Scandinavian Workshop on Algorithm Theory\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Workshop on Algorithm Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SWAT.2022.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2022.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dense Graph Partitioning on sparse and dense graphs
We consider the problem of partitioning a graph into a non-fixed number of non-overlapping subgraphs of maximum density. The density of a partition is the sum of the densities of the subgraphs, where the density of a subgraph is its average degree, that is, the ratio of its number of edges and its number of vertices. This problem, called Dense Graph Partition, is known to be NP-hard on general graphs and polynomial-time solvable on trees, and polynomial-time 2-approximable. In this paper we study the restriction of Dense Graph Partition to particular sparse and dense graph classes. In particular, we prove that it is NP-hard on dense bipartite graphs as well as on cubic graphs. On dense graphs on $n$ vertices, it is polynomial-time solvable on graphs with minimum degree $n-3$ and NP-hard on $(n-4)$-regular graphs. We prove that it is polynomial-time $4/3$-approximable on cubic graphs and admits an efficient polynomial-time approximation scheme on graphs of minimum degree $n-t$ for any constant $t\geq 4$.