{"title":"大流行期间接触者追踪和流动模式检测——基于轨迹聚类的方法","authors":"N. A., Sajimon Abraham","doi":"10.1108/ijpcc-05-2021-0111","DOIUrl":null,"url":null,"abstract":"\nPurpose\nA wide number of technologies are currently in store to harness the challenges posed by pandemic situations. As such diseases transmit by way of person-to-person contact or by any other means, the World Health Organization had recommended location tracking and tracing of people either infected or contacted with the patients as one of the standard operating procedures and has also outlined protocols for incident management. Government agencies use different inputs such as smartphone signals and details from the respondent to prepare the travel log of patients. Each and every event of their trace such as stay points, revisit locations and meeting points is important. More trained staffs and tools are required under the traditional system of contact tracing. At the time of the spiralling patient count, the time-bound tracing of primary and secondary contacts may not be possible, and there are chances of human errors as well. In this context, the purpose of this paper is to propose an algorithm called SemTraClus-Tracer, an efficient approach for computing the movement of individuals and analysing the possibility of pandemic spread and vulnerability of the locations.\n\n\nDesign/methodology/approach\nPandemic situations push the world into existential crises. In this context, this paper proposes an algorithm called SemTraClus-Tracer, an efficient approach for computing the movement of individuals and analysing the possibility of pandemic spread and vulnerability of the locations. By exploring the daily mobility and activities of the general public, the system identifies multiple levels of contacts with respect to an infected person and extracts semantic information by considering vital factors that can induce virus spread. It grades different geographic locations according to a measure called weightage of participation so that vulnerable locations can be easily identified. This paper gives directions on the advantages of using spatio-temporal aggregate queries for extracting general characteristics of social mobility. The system also facilitates room for the generation of various information by combing through the medical reports of the patients.\n\n\nFindings\nIt is identified that context of movement is important; hence, the existing SemTraClus algorithm is modified by accounting for four important factors such as stay point, contact presence, stay time of primary contacts and waypoint severity. The priority level can be reconfigured according to the interest of authority. This approach reduces the overwhelming task of contact tracing. Different functionalities provided by the system are also explained. As the real data set is not available, experiments are conducted with similar data and results are shown for different types of journeys in different geographical locations. The proposed method efficiently handles computational movement and activity analysis by incorporating various relevant semantics of trajectories. The incorporation of cluster-based aggregate queries in the model do away with the computational headache of processing the entire mobility data.\n\n\nResearch limitations/implications\nAs the trajectory of patients is not available, the authors have used the standard data sets for experimentation, which serve the purpose.\n\n\nOriginality/value\nThis paper proposes a framework infrastructure that allows the emergency response team to grab multiple information based on the tracked mobility details of a patient and facilitates room for various activities for the mitigation of pandemics such as the prediction of hotspots, identification of stay locations and suggestion of possible locations of primary and secondary contacts, creation of clusters of hotspots and identification of nearby medical assistance. The system provides an efficient way of activity analysis by computing the mobility of people and identifying features of geographical locations where people travelled. While formulating the framework, the authors have reviewed many different implementation plans and protocols and arrived at the conclusion that the core strategy followed is more or less the same. For the sake of a reference model, the Indian scenario is adopted for defining the concepts.\n","PeriodicalId":210948,"journal":{"name":"Int. J. Pervasive Comput. Commun.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact tracing and mobility pattern detection during pandemics - a trajectory cluster based approach\",\"authors\":\"N. A., Sajimon Abraham\",\"doi\":\"10.1108/ijpcc-05-2021-0111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nA wide number of technologies are currently in store to harness the challenges posed by pandemic situations. As such diseases transmit by way of person-to-person contact or by any other means, the World Health Organization had recommended location tracking and tracing of people either infected or contacted with the patients as one of the standard operating procedures and has also outlined protocols for incident management. Government agencies use different inputs such as smartphone signals and details from the respondent to prepare the travel log of patients. Each and every event of their trace such as stay points, revisit locations and meeting points is important. More trained staffs and tools are required under the traditional system of contact tracing. At the time of the spiralling patient count, the time-bound tracing of primary and secondary contacts may not be possible, and there are chances of human errors as well. In this context, the purpose of this paper is to propose an algorithm called SemTraClus-Tracer, an efficient approach for computing the movement of individuals and analysing the possibility of pandemic spread and vulnerability of the locations.\\n\\n\\nDesign/methodology/approach\\nPandemic situations push the world into existential crises. In this context, this paper proposes an algorithm called SemTraClus-Tracer, an efficient approach for computing the movement of individuals and analysing the possibility of pandemic spread and vulnerability of the locations. By exploring the daily mobility and activities of the general public, the system identifies multiple levels of contacts with respect to an infected person and extracts semantic information by considering vital factors that can induce virus spread. It grades different geographic locations according to a measure called weightage of participation so that vulnerable locations can be easily identified. This paper gives directions on the advantages of using spatio-temporal aggregate queries for extracting general characteristics of social mobility. The system also facilitates room for the generation of various information by combing through the medical reports of the patients.\\n\\n\\nFindings\\nIt is identified that context of movement is important; hence, the existing SemTraClus algorithm is modified by accounting for four important factors such as stay point, contact presence, stay time of primary contacts and waypoint severity. The priority level can be reconfigured according to the interest of authority. This approach reduces the overwhelming task of contact tracing. Different functionalities provided by the system are also explained. As the real data set is not available, experiments are conducted with similar data and results are shown for different types of journeys in different geographical locations. The proposed method efficiently handles computational movement and activity analysis by incorporating various relevant semantics of trajectories. The incorporation of cluster-based aggregate queries in the model do away with the computational headache of processing the entire mobility data.\\n\\n\\nResearch limitations/implications\\nAs the trajectory of patients is not available, the authors have used the standard data sets for experimentation, which serve the purpose.\\n\\n\\nOriginality/value\\nThis paper proposes a framework infrastructure that allows the emergency response team to grab multiple information based on the tracked mobility details of a patient and facilitates room for various activities for the mitigation of pandemics such as the prediction of hotspots, identification of stay locations and suggestion of possible locations of primary and secondary contacts, creation of clusters of hotspots and identification of nearby medical assistance. The system provides an efficient way of activity analysis by computing the mobility of people and identifying features of geographical locations where people travelled. While formulating the framework, the authors have reviewed many different implementation plans and protocols and arrived at the conclusion that the core strategy followed is more or less the same. For the sake of a reference model, the Indian scenario is adopted for defining the concepts.\\n\",\"PeriodicalId\":210948,\"journal\":{\"name\":\"Int. J. Pervasive Comput. Commun.\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Pervasive Comput. Commun.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijpcc-05-2021-0111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Pervasive Comput. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpcc-05-2021-0111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contact tracing and mobility pattern detection during pandemics - a trajectory cluster based approach
Purpose
A wide number of technologies are currently in store to harness the challenges posed by pandemic situations. As such diseases transmit by way of person-to-person contact or by any other means, the World Health Organization had recommended location tracking and tracing of people either infected or contacted with the patients as one of the standard operating procedures and has also outlined protocols for incident management. Government agencies use different inputs such as smartphone signals and details from the respondent to prepare the travel log of patients. Each and every event of their trace such as stay points, revisit locations and meeting points is important. More trained staffs and tools are required under the traditional system of contact tracing. At the time of the spiralling patient count, the time-bound tracing of primary and secondary contacts may not be possible, and there are chances of human errors as well. In this context, the purpose of this paper is to propose an algorithm called SemTraClus-Tracer, an efficient approach for computing the movement of individuals and analysing the possibility of pandemic spread and vulnerability of the locations.
Design/methodology/approach
Pandemic situations push the world into existential crises. In this context, this paper proposes an algorithm called SemTraClus-Tracer, an efficient approach for computing the movement of individuals and analysing the possibility of pandemic spread and vulnerability of the locations. By exploring the daily mobility and activities of the general public, the system identifies multiple levels of contacts with respect to an infected person and extracts semantic information by considering vital factors that can induce virus spread. It grades different geographic locations according to a measure called weightage of participation so that vulnerable locations can be easily identified. This paper gives directions on the advantages of using spatio-temporal aggregate queries for extracting general characteristics of social mobility. The system also facilitates room for the generation of various information by combing through the medical reports of the patients.
Findings
It is identified that context of movement is important; hence, the existing SemTraClus algorithm is modified by accounting for four important factors such as stay point, contact presence, stay time of primary contacts and waypoint severity. The priority level can be reconfigured according to the interest of authority. This approach reduces the overwhelming task of contact tracing. Different functionalities provided by the system are also explained. As the real data set is not available, experiments are conducted with similar data and results are shown for different types of journeys in different geographical locations. The proposed method efficiently handles computational movement and activity analysis by incorporating various relevant semantics of trajectories. The incorporation of cluster-based aggregate queries in the model do away with the computational headache of processing the entire mobility data.
Research limitations/implications
As the trajectory of patients is not available, the authors have used the standard data sets for experimentation, which serve the purpose.
Originality/value
This paper proposes a framework infrastructure that allows the emergency response team to grab multiple information based on the tracked mobility details of a patient and facilitates room for various activities for the mitigation of pandemics such as the prediction of hotspots, identification of stay locations and suggestion of possible locations of primary and secondary contacts, creation of clusters of hotspots and identification of nearby medical assistance. The system provides an efficient way of activity analysis by computing the mobility of people and identifying features of geographical locations where people travelled. While formulating the framework, the authors have reviewed many different implementation plans and protocols and arrived at the conclusion that the core strategy followed is more or less the same. For the sake of a reference model, the Indian scenario is adopted for defining the concepts.