Jefry O. Narvasa, Jorhee Ronald S. Calumba, Giselle Alvarez, Michael P. Baldado Jr., Rosario C. Abrasaldo, Joselito D. Pamor, H. V. Inoferio
{"title":"(t,r)图的连接和电晕的广播支配数","authors":"Jefry O. Narvasa, Jorhee Ronald S. Calumba, Giselle Alvarez, Michael P. Baldado Jr., Rosario C. Abrasaldo, Joselito D. Pamor, H. V. Inoferio","doi":"10.12988/pms.2022.91282","DOIUrl":null,"url":null,"abstract":"Let G be a graph and u, v ∈ V ( G ). If t ∈ N , then the reception strength of u with respect to t and v is given by r tv ( u ) = t − d ( u, v ) if t ≥ d ( u, v ) and r tv ( u ) = 0 if t < d ( u, v ). If S ⊆ V ( G ), then the reception strength of u with respect to t and S is given by P v ∈ S r tv ( u ). We say that S is a ( t, r ) broadcast dominating set in G if the reception strength of u with respect to t and S is greater than or equal r for all vertices u . The ( t, r ) broadcast domination number of G is the minimum cardinality of a ( t, r ) broadcast dominating set of G . In this paper, we gave the ( t, r ) broadcast domination number of paths, cycles, complete graphs, the join of two arbitrary graphs, and the corona of two arbitrary graphs.","PeriodicalId":155967,"journal":{"name":"Pure Mathematical Sciences","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(t,r) Broadcast domination number of the join and corona of graphs\",\"authors\":\"Jefry O. Narvasa, Jorhee Ronald S. Calumba, Giselle Alvarez, Michael P. Baldado Jr., Rosario C. Abrasaldo, Joselito D. Pamor, H. V. Inoferio\",\"doi\":\"10.12988/pms.2022.91282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a graph and u, v ∈ V ( G ). If t ∈ N , then the reception strength of u with respect to t and v is given by r tv ( u ) = t − d ( u, v ) if t ≥ d ( u, v ) and r tv ( u ) = 0 if t < d ( u, v ). If S ⊆ V ( G ), then the reception strength of u with respect to t and S is given by P v ∈ S r tv ( u ). We say that S is a ( t, r ) broadcast dominating set in G if the reception strength of u with respect to t and S is greater than or equal r for all vertices u . The ( t, r ) broadcast domination number of G is the minimum cardinality of a ( t, r ) broadcast dominating set of G . In this paper, we gave the ( t, r ) broadcast domination number of paths, cycles, complete graphs, the join of two arbitrary graphs, and the corona of two arbitrary graphs.\",\"PeriodicalId\":155967,\"journal\":{\"name\":\"Pure Mathematical Sciences\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/pms.2022.91282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/pms.2022.91282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设G是一个图,u, v∈v (G)如果t∈N,则u相对于t和v的接收强度为:如果t≥d (u, v),则r tv (u) = t - d (u, v);如果t < d (u, v),则r tv (u) = 0。若S∈V (G),则u相对于t和S的接收强度由pv∈S r tv (u)给出。我们说S是G中的一个(t, r)广播支配集,如果u对t和S的接收强度对所有u都大于等于r。G的(t, r)广播支配数是G的(t, r)广播支配集的最小基数。本文给出了路径、环、完全图的(t, r)广播支配数、两个任意图的连接以及两个任意图的冕。
(t,r) Broadcast domination number of the join and corona of graphs
Let G be a graph and u, v ∈ V ( G ). If t ∈ N , then the reception strength of u with respect to t and v is given by r tv ( u ) = t − d ( u, v ) if t ≥ d ( u, v ) and r tv ( u ) = 0 if t < d ( u, v ). If S ⊆ V ( G ), then the reception strength of u with respect to t and S is given by P v ∈ S r tv ( u ). We say that S is a ( t, r ) broadcast dominating set in G if the reception strength of u with respect to t and S is greater than or equal r for all vertices u . The ( t, r ) broadcast domination number of G is the minimum cardinality of a ( t, r ) broadcast dominating set of G . In this paper, we gave the ( t, r ) broadcast domination number of paths, cycles, complete graphs, the join of two arbitrary graphs, and the corona of two arbitrary graphs.