针对工作推荐挑战的推荐系统的初步研究

Mirko Polato, F. Aiolli
{"title":"针对工作推荐挑战的推荐系统的初步研究","authors":"Mirko Polato, F. Aiolli","doi":"10.1145/2987538.2987549","DOIUrl":null,"url":null,"abstract":"In this paper we present our method used in the RecSys '16 Challenge.\n In particular, we propose a general collaborative filtering framework where many predictors can be cast. The framework is able to incorporate information about the content but in a collaborative fashion. Using this framework we instantiate a set of different predictors that consider different aspects of the dataset provided for the challenge. In order to merge all these aspects together, we also provide a method able to linearly combine the predictors. This method learns the weights of the predictors by solving a quadratic optimization problem.\n In the experimental section we show the performance using different predictors combinations. Results highlight the fact that the combination always outperforms the single predictor.","PeriodicalId":127880,"journal":{"name":"RecSys Challenge '16","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A preliminary study on a recommender system for the job recommendation challenge\",\"authors\":\"Mirko Polato, F. Aiolli\",\"doi\":\"10.1145/2987538.2987549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present our method used in the RecSys '16 Challenge.\\n In particular, we propose a general collaborative filtering framework where many predictors can be cast. The framework is able to incorporate information about the content but in a collaborative fashion. Using this framework we instantiate a set of different predictors that consider different aspects of the dataset provided for the challenge. In order to merge all these aspects together, we also provide a method able to linearly combine the predictors. This method learns the weights of the predictors by solving a quadratic optimization problem.\\n In the experimental section we show the performance using different predictors combinations. Results highlight the fact that the combination always outperforms the single predictor.\",\"PeriodicalId\":127880,\"journal\":{\"name\":\"RecSys Challenge '16\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RecSys Challenge '16\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2987538.2987549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RecSys Challenge '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987538.2987549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们介绍了我们在RecSys '16挑战赛中使用的方法。特别地,我们提出了一个通用的协同过滤框架,其中可以投射许多预测器。该框架能够以协作的方式合并有关内容的信息。使用这个框架,我们实例化了一组不同的预测器,这些预测器考虑了为挑战提供的数据集的不同方面。为了将所有这些方面合并在一起,我们还提供了一种能够线性组合预测器的方法。该方法通过求解二次优化问题来学习预测因子的权重。在实验部分,我们展示了使用不同预测因子组合的性能。结果突出了这样一个事实,即组合总是优于单一预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A preliminary study on a recommender system for the job recommendation challenge
In this paper we present our method used in the RecSys '16 Challenge. In particular, we propose a general collaborative filtering framework where many predictors can be cast. The framework is able to incorporate information about the content but in a collaborative fashion. Using this framework we instantiate a set of different predictors that consider different aspects of the dataset provided for the challenge. In order to merge all these aspects together, we also provide a method able to linearly combine the predictors. This method learns the weights of the predictors by solving a quadratic optimization problem. In the experimental section we show the performance using different predictors combinations. Results highlight the fact that the combination always outperforms the single predictor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信