独立分量分析在遥感多光谱图像分类中的改进

M. S. Karoui, Y. Deville, S. Hosseini, A. Ouamri, D. Ducrot
{"title":"独立分量分析在遥感多光谱图像分类中的改进","authors":"M. S. Karoui, Y. Deville, S. Hosseini, A. Ouamri, D. Ducrot","doi":"10.1109/WHISPERS.2009.5289033","DOIUrl":null,"url":null,"abstract":"This paper deals with the application of Independent Component Analysis (ICA) as a solution to Blind Source Separation (BSS), in order to pre-process remote sensing multispectral images before we classify them. We analyze the structure of the considered data, and especially show that each recorded image corresponding to a spectral band may be seen as an observation consisting of a mixture (linear combination) of source images. The latter images correspond to the abundances of the pure elements (endmembers) in the pixels. Using BSS methods, one can hope to reduce the mixing effect in these observations, which then allows better recognition of the classes constituting the observed scene. Based on this approach, we create new images (i.e. at least partly separated images) by using ICA, starting from HRV SPOT images. These images are then used as inputs of a supervised classifier integrating textural information. The separated image classification results show a clear improvement compared to classification of initial images. This show the contribution of ICA as an attractive pre-processing for classification of multispectral remote sensing imagery.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Improvement of remote sensing multispectral image classification by using Independent Component Analysis\",\"authors\":\"M. S. Karoui, Y. Deville, S. Hosseini, A. Ouamri, D. Ducrot\",\"doi\":\"10.1109/WHISPERS.2009.5289033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the application of Independent Component Analysis (ICA) as a solution to Blind Source Separation (BSS), in order to pre-process remote sensing multispectral images before we classify them. We analyze the structure of the considered data, and especially show that each recorded image corresponding to a spectral band may be seen as an observation consisting of a mixture (linear combination) of source images. The latter images correspond to the abundances of the pure elements (endmembers) in the pixels. Using BSS methods, one can hope to reduce the mixing effect in these observations, which then allows better recognition of the classes constituting the observed scene. Based on this approach, we create new images (i.e. at least partly separated images) by using ICA, starting from HRV SPOT images. These images are then used as inputs of a supervised classifier integrating textural information. The separated image classification results show a clear improvement compared to classification of initial images. This show the contribution of ICA as an attractive pre-processing for classification of multispectral remote sensing imagery.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5289033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文研究了将独立分量分析(ICA)作为盲源分离(BSS)的一种解决方案,在遥感多光谱图像分类前对其进行预处理。我们分析了考虑的数据的结构,并特别表明,每个记录图像对应于一个光谱带可以看作是一个观测组成的混合(线性组合)的源图像。后一幅图像对应于像素中纯元素(端元)的丰度。使用BSS方法,人们可以希望减少这些观测中的混合效应,从而可以更好地识别构成观测场景的类别。基于这种方法,我们使用ICA从HRV SPOT图像开始创建新图像(即至少部分分离的图像)。然后将这些图像用作集成纹理信息的监督分类器的输入。与初始图像分类相比,分离后的图像分类结果有明显改善。这表明ICA作为一种有吸引力的多光谱遥感图像分类预处理的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of remote sensing multispectral image classification by using Independent Component Analysis
This paper deals with the application of Independent Component Analysis (ICA) as a solution to Blind Source Separation (BSS), in order to pre-process remote sensing multispectral images before we classify them. We analyze the structure of the considered data, and especially show that each recorded image corresponding to a spectral band may be seen as an observation consisting of a mixture (linear combination) of source images. The latter images correspond to the abundances of the pure elements (endmembers) in the pixels. Using BSS methods, one can hope to reduce the mixing effect in these observations, which then allows better recognition of the classes constituting the observed scene. Based on this approach, we create new images (i.e. at least partly separated images) by using ICA, starting from HRV SPOT images. These images are then used as inputs of a supervised classifier integrating textural information. The separated image classification results show a clear improvement compared to classification of initial images. This show the contribution of ICA as an attractive pre-processing for classification of multispectral remote sensing imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信