本质上是半小拟dedekind模和反hopfian模

Mukdad Qaess HUSSAIN, Rehab Noori SHALLAN, Zahraa jawad KADHIM
{"title":"本质上是半小拟dedekind模和反hopfian模","authors":"Mukdad Qaess HUSSAIN, Rehab Noori SHALLAN, Zahraa jawad KADHIM","doi":"10.47832/minarcongress4-36","DOIUrl":null,"url":null,"abstract":"Let V be a ring with identity and S be a unitary left Module over V. An 𝐑-Module S is essentially semismall quasi-Dedekind (ESSQD) whether Hom(S/H,S) = 0 H es S. A ring V is ESSQD if V is an ESSQD V-Module. An V -Module S is anti-hopfian if S is nonsimple and all nonzero factor Modules of S are isomorphic to S; that is for all , S Y  S . In this paper we study the relationship between ESSQD with anti-hopfian Modules and continuous Modules. We also give some examples to illustrate these relationships.","PeriodicalId":443095,"journal":{"name":"Full Text Book of Minar Congress4","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESSENTIALLY SEMIMALL QUASI-DEDEKIND MODULES AND ANTI-HOPFIAN MODULES\",\"authors\":\"Mukdad Qaess HUSSAIN, Rehab Noori SHALLAN, Zahraa jawad KADHIM\",\"doi\":\"10.47832/minarcongress4-36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let V be a ring with identity and S be a unitary left Module over V. An 𝐑-Module S is essentially semismall quasi-Dedekind (ESSQD) whether Hom(S/H,S) = 0 H es S. A ring V is ESSQD if V is an ESSQD V-Module. An V -Module S is anti-hopfian if S is nonsimple and all nonzero factor Modules of S are isomorphic to S; that is for all , S Y  S . In this paper we study the relationship between ESSQD with anti-hopfian Modules and continuous Modules. We also give some examples to illustrate these relationships.\",\"PeriodicalId\":443095,\"journal\":{\"name\":\"Full Text Book of Minar Congress4\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Full Text Book of Minar Congress4\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47832/minarcongress4-36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Full Text Book of Minar Congress4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47832/minarcongress4-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设V是一个恒等环,S是V上的一个酉左模,当hm (S/H,S) = 0 H时,𝐑-Module S本质上是一个半小拟dedekind (ESSQD),如果V是一个ESSQD V模,则环V是ESSQD。如果S是非简单的且S的所有非零因子模都同构于S,则V -模S是反hopfian的;这是给所有人的。本文研究了具有反hopfian模和连续模的ESSQD之间的关系。我们还会给出一些例子来说明这些关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESSENTIALLY SEMIMALL QUASI-DEDEKIND MODULES AND ANTI-HOPFIAN MODULES
Let V be a ring with identity and S be a unitary left Module over V. An 𝐑-Module S is essentially semismall quasi-Dedekind (ESSQD) whether Hom(S/H,S) = 0 H es S. A ring V is ESSQD if V is an ESSQD V-Module. An V -Module S is anti-hopfian if S is nonsimple and all nonzero factor Modules of S are isomorphic to S; that is for all , S Y  S . In this paper we study the relationship between ESSQD with anti-hopfian Modules and continuous Modules. We also give some examples to illustrate these relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信