Wei Wang, Yinfang Zhu, D. Ding, Jing Li, Yuxiang Luo
{"title":"基于变压器的多尺度多阶段单图像超分辨率重建算法","authors":"Wei Wang, Yinfang Zhu, D. Ding, Jing Li, Yuxiang Luo","doi":"10.1109/DCABES57229.2022.00044","DOIUrl":null,"url":null,"abstract":"In this paper, creatively combining Transformer with image super-resolution reconstruction, we proposes a multi-scale multi-stage single image super-resolution reconstruction algorithm based on Transformer (MSTN). The algorithm uses Transformer as a feature sharing module, thus it realizes network parameter sharing, dynamically focuses on the correlation between feature information of adjacent stages, and then extracts the high-frequency texture information embedded in the current stage features from the feature information learned in the previous stage, which achieves a coarse-to-fine enhancement of image reconstruction. Experiments show that our method can not only per-form better image super-resolution reconstruction compared with other advanced methods, but also reduce the network parameters to a great extent.","PeriodicalId":344365,"journal":{"name":"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"316 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Scale Multi-Stage Single Image Super-Resolution Reconstruction Algorithm Based on Transformer\",\"authors\":\"Wei Wang, Yinfang Zhu, D. Ding, Jing Li, Yuxiang Luo\",\"doi\":\"10.1109/DCABES57229.2022.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, creatively combining Transformer with image super-resolution reconstruction, we proposes a multi-scale multi-stage single image super-resolution reconstruction algorithm based on Transformer (MSTN). The algorithm uses Transformer as a feature sharing module, thus it realizes network parameter sharing, dynamically focuses on the correlation between feature information of adjacent stages, and then extracts the high-frequency texture information embedded in the current stage features from the feature information learned in the previous stage, which achieves a coarse-to-fine enhancement of image reconstruction. Experiments show that our method can not only per-form better image super-resolution reconstruction compared with other advanced methods, but also reduce the network parameters to a great extent.\",\"PeriodicalId\":344365,\"journal\":{\"name\":\"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)\",\"volume\":\"316 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCABES57229.2022.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES57229.2022.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Scale Multi-Stage Single Image Super-Resolution Reconstruction Algorithm Based on Transformer
In this paper, creatively combining Transformer with image super-resolution reconstruction, we proposes a multi-scale multi-stage single image super-resolution reconstruction algorithm based on Transformer (MSTN). The algorithm uses Transformer as a feature sharing module, thus it realizes network parameter sharing, dynamically focuses on the correlation between feature information of adjacent stages, and then extracts the high-frequency texture information embedded in the current stage features from the feature information learned in the previous stage, which achieves a coarse-to-fine enhancement of image reconstruction. Experiments show that our method can not only per-form better image super-resolution reconstruction compared with other advanced methods, but also reduce the network parameters to a great extent.