偏好数据模式发现的块混合模型

Nicola Barbieri, M. Guarascio, G. Manco
{"title":"偏好数据模式发现的块混合模型","authors":"Nicola Barbieri, M. Guarascio, G. Manco","doi":"10.1109/ICDMW.2010.59","DOIUrl":null,"url":null,"abstract":"This paper presents a probabilistic co-clustering approach to pattern discovery in preference data. We extended the original formulation of the block mixture model to handle rating data, the resulting model allows the simultaneous clustering of users and items in homogeneous user communities and item categories. The parameter of the model are determined using a variational approximation and a two-phase application of the EM algorithm. The experimental evaluation showed that proposed approach can be used both for rating prediction and pattern discovery tasks, such as the analysis of common trends within the same user community and the identification of interesting relationships between products belonging to the same item category. In particular, using Movie Lens data, we show how it is possibile to infer topics for each item category, and how to model community interests and transition among topics of interest.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Block Mixture Model for Pattern Discovery in Preference Data\",\"authors\":\"Nicola Barbieri, M. Guarascio, G. Manco\",\"doi\":\"10.1109/ICDMW.2010.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a probabilistic co-clustering approach to pattern discovery in preference data. We extended the original formulation of the block mixture model to handle rating data, the resulting model allows the simultaneous clustering of users and items in homogeneous user communities and item categories. The parameter of the model are determined using a variational approximation and a two-phase application of the EM algorithm. The experimental evaluation showed that proposed approach can be used both for rating prediction and pattern discovery tasks, such as the analysis of common trends within the same user community and the identification of interesting relationships between products belonging to the same item category. In particular, using Movie Lens data, we show how it is possibile to infer topics for each item category, and how to model community interests and transition among topics of interest.\",\"PeriodicalId\":170201,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining Workshops\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2010.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于概率共聚类的偏好数据模式发现方法。我们扩展了块混合模型的原始公式来处理评级数据,所得到的模型允许在同质用户社区和商品类别中同时聚类用户和商品。模型参数的确定采用变分逼近和两阶段应用电磁算法。实验结果表明,该方法既可以用于评级预测,也可以用于模式发现任务,如分析同一用户群体内的共同趋势,识别属于同一商品类别的产品之间的有趣关系。特别是,使用Movie Lens数据,我们展示了如何推断每个项目类别的主题,以及如何建模社区兴趣和兴趣主题之间的转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Block Mixture Model for Pattern Discovery in Preference Data
This paper presents a probabilistic co-clustering approach to pattern discovery in preference data. We extended the original formulation of the block mixture model to handle rating data, the resulting model allows the simultaneous clustering of users and items in homogeneous user communities and item categories. The parameter of the model are determined using a variational approximation and a two-phase application of the EM algorithm. The experimental evaluation showed that proposed approach can be used both for rating prediction and pattern discovery tasks, such as the analysis of common trends within the same user community and the identification of interesting relationships between products belonging to the same item category. In particular, using Movie Lens data, we show how it is possibile to infer topics for each item category, and how to model community interests and transition among topics of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信