BMFLC结合神经网络和DE进行更好的事件分类

Yubo Wang, V. Gonuguntla, G. Shafiq, K. Veluvolu
{"title":"BMFLC结合神经网络和DE进行更好的事件分类","authors":"Yubo Wang, V. Gonuguntla, G. Shafiq, K. Veluvolu","doi":"10.1109/IWW-BCI.2013.6506621","DOIUrl":null,"url":null,"abstract":"The event-related desynchronization(ERD) is a well known phenomenon that is commonly used for classification in brain-computer interface(BCI) applications. The classification accuracy of ERD based BCI can be improved by selection of subject-specific reactive band rather than complete μ-band. After obtaining time-frequency(TF) mapping of EEG signal with a Fourier based adaptive method, differential evolution(DE) is used for the identification of the reactive band. Compared to classical band-power based method, the proposed method based on subject-specific reactive band yields better accuracy with BCI competition dataset IV.","PeriodicalId":129758,"journal":{"name":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"BMFLC with neural network and DE for better event classification\",\"authors\":\"Yubo Wang, V. Gonuguntla, G. Shafiq, K. Veluvolu\",\"doi\":\"10.1109/IWW-BCI.2013.6506621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The event-related desynchronization(ERD) is a well known phenomenon that is commonly used for classification in brain-computer interface(BCI) applications. The classification accuracy of ERD based BCI can be improved by selection of subject-specific reactive band rather than complete μ-band. After obtaining time-frequency(TF) mapping of EEG signal with a Fourier based adaptive method, differential evolution(DE) is used for the identification of the reactive band. Compared to classical band-power based method, the proposed method based on subject-specific reactive band yields better accuracy with BCI competition dataset IV.\",\"PeriodicalId\":129758,\"journal\":{\"name\":\"2013 International Winter Workshop on Brain-Computer Interface (BCI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Winter Workshop on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2013.6506621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2013.6506621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

事件相关去同步(ERD)是脑机接口(BCI)应用中常用的分类现象。基于ERD的脑机接口的分类精度可以通过选择受试者特异性反应波段而不是完整的μ波段来提高。利用基于傅里叶的自适应方法获得脑电信号的时频映射后,利用差分进化方法识别脑电信号的反应带。与经典的基于频带功率的方法相比,本文提出的基于主题特定反应频带的方法在BCI竞争数据集IV上具有更好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BMFLC with neural network and DE for better event classification
The event-related desynchronization(ERD) is a well known phenomenon that is commonly used for classification in brain-computer interface(BCI) applications. The classification accuracy of ERD based BCI can be improved by selection of subject-specific reactive band rather than complete μ-band. After obtaining time-frequency(TF) mapping of EEG signal with a Fourier based adaptive method, differential evolution(DE) is used for the identification of the reactive band. Compared to classical band-power based method, the proposed method based on subject-specific reactive band yields better accuracy with BCI competition dataset IV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信