一种新的加减速算法及其应用

Zhang Zhanli, Guo Shijun, Wang Hengdi, D. Sier
{"title":"一种新的加减速算法及其应用","authors":"Zhang Zhanli, Guo Shijun, Wang Hengdi, D. Sier","doi":"10.1109/ISDEA.2012.660","DOIUrl":null,"url":null,"abstract":"The control of acceleration and deceleration of stepper motor is one of the most key technologies of CNC system development. Acceleration is discontinuous in linear acceleration and deceleration, which caused impact in NC machining. The exponential algorithm has a strong tracking capability but weak stability at higher speed. The questions could be overcome by conventional S-curve acceleration and deceleration implementation method, but the algorithm is too complex. So a new method was proposed to implement S-curve acceleration and deceleration. This paper presents five-stage model of S curve acceleration and deceleration algorithm to satisfy the actual roller polishing machine needs. The algorithm consists of five kinematic stages: increasing acceleration stage, decreasing acceleration stage, constant-speed stage, increasing deceleration stage and decreasing deceleration stage. At the starting point and the ending point, the velocity is zero and the jerk is absolutely the maximum value J. Analysis shows that: the acceleration curve of the algorithm is a continuous curve, and there is a first-order continuous relationship between time and speed, a smooth velocity and acceleration can be obtained, which is to avoid the impact when the CNC system accelerates and decelerates or reverses. The application on roller polishing machine shows that : compared with the traditional S-curve, the algorithm can make sure the acceleration is continuous, the speed changes smoothly, the flexibility is improved and the algorithm is easy to implement.","PeriodicalId":267532,"journal":{"name":"2012 Second International Conference on Intelligent System Design and Engineering Application","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A New Acceleration and Deceleration Algorithm and Applications\",\"authors\":\"Zhang Zhanli, Guo Shijun, Wang Hengdi, D. Sier\",\"doi\":\"10.1109/ISDEA.2012.660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control of acceleration and deceleration of stepper motor is one of the most key technologies of CNC system development. Acceleration is discontinuous in linear acceleration and deceleration, which caused impact in NC machining. The exponential algorithm has a strong tracking capability but weak stability at higher speed. The questions could be overcome by conventional S-curve acceleration and deceleration implementation method, but the algorithm is too complex. So a new method was proposed to implement S-curve acceleration and deceleration. This paper presents five-stage model of S curve acceleration and deceleration algorithm to satisfy the actual roller polishing machine needs. The algorithm consists of five kinematic stages: increasing acceleration stage, decreasing acceleration stage, constant-speed stage, increasing deceleration stage and decreasing deceleration stage. At the starting point and the ending point, the velocity is zero and the jerk is absolutely the maximum value J. Analysis shows that: the acceleration curve of the algorithm is a continuous curve, and there is a first-order continuous relationship between time and speed, a smooth velocity and acceleration can be obtained, which is to avoid the impact when the CNC system accelerates and decelerates or reverses. The application on roller polishing machine shows that : compared with the traditional S-curve, the algorithm can make sure the acceleration is continuous, the speed changes smoothly, the flexibility is improved and the algorithm is easy to implement.\",\"PeriodicalId\":267532,\"journal\":{\"name\":\"2012 Second International Conference on Intelligent System Design and Engineering Application\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Second International Conference on Intelligent System Design and Engineering Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDEA.2012.660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Second International Conference on Intelligent System Design and Engineering Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDEA.2012.660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

步进电机加减速控制是数控系统开发的关键技术之一。直线加减速中的加速度是不连续的,在数控加工中会产生影响。指数算法具有较强的跟踪能力,但在高速下稳定性较差。传统的s曲线加减速实现方法可以克服这些问题,但算法过于复杂。为此,提出了一种实现s曲线加减速的新方法。针对滚轮抛光机的实际需要,提出了S曲线加减速算法的五阶段模型。该算法包括五个运动阶段:增加加速度阶段、减少加速度阶段、等速阶段、增加减速阶段和减少减速阶段。分析表明:该算法的加速度曲线为连续曲线,且时间与速度之间存在一阶连续关系,可以得到平滑的速度和加速度,从而避免了数控系统在加减速或倒车时受到冲击。在滚轮抛光机上的应用表明:与传统的s曲线相比,该算法能保证加速度连续,速度变化平稳,提高了灵活性,算法易于实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Acceleration and Deceleration Algorithm and Applications
The control of acceleration and deceleration of stepper motor is one of the most key technologies of CNC system development. Acceleration is discontinuous in linear acceleration and deceleration, which caused impact in NC machining. The exponential algorithm has a strong tracking capability but weak stability at higher speed. The questions could be overcome by conventional S-curve acceleration and deceleration implementation method, but the algorithm is too complex. So a new method was proposed to implement S-curve acceleration and deceleration. This paper presents five-stage model of S curve acceleration and deceleration algorithm to satisfy the actual roller polishing machine needs. The algorithm consists of five kinematic stages: increasing acceleration stage, decreasing acceleration stage, constant-speed stage, increasing deceleration stage and decreasing deceleration stage. At the starting point and the ending point, the velocity is zero and the jerk is absolutely the maximum value J. Analysis shows that: the acceleration curve of the algorithm is a continuous curve, and there is a first-order continuous relationship between time and speed, a smooth velocity and acceleration can be obtained, which is to avoid the impact when the CNC system accelerates and decelerates or reverses. The application on roller polishing machine shows that : compared with the traditional S-curve, the algorithm can make sure the acceleration is continuous, the speed changes smoothly, the flexibility is improved and the algorithm is easy to implement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信