基于cnn的片内编码块划分驱动

Franck Galpin, Fabien Racapé, S. Jaiswal, P. Bordes, F. L. Léannec, E. François
{"title":"基于cnn的片内编码块划分驱动","authors":"Franck Galpin, Fabien Racapé, S. Jaiswal, P. Bordes, F. L. Léannec, E. François","doi":"10.1109/DCC.2019.00024","DOIUrl":null,"url":null,"abstract":"This paper provides a technical overview of a deep-learning-based encoder method aiming at optimizing next generation hybrid video encoders for driving the block partitioning in intra slices. An encoding approach based on Convolutional Neural Networks is explored to partly substitute classical heuristics-based encoder speed-ups by a systematic and automatic process. The solution allows controlling the trade-off between complexity and coding gains, in intra slices, with one single parameter. This algorithm was proposed at the Call for Proposals of the Joint Video Exploration Team (JVET) on video compression with capability beyond HEVC. In All Intra configuration, for a given allowed topology of splits, a speed-up of ×2 is obtained without BD-rate loss, or a speed-up above ×4 with a loss below 1% in BD-rate.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"CNN-Based Driving of Block Partitioning for Intra Slices Encoding\",\"authors\":\"Franck Galpin, Fabien Racapé, S. Jaiswal, P. Bordes, F. L. Léannec, E. François\",\"doi\":\"10.1109/DCC.2019.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a technical overview of a deep-learning-based encoder method aiming at optimizing next generation hybrid video encoders for driving the block partitioning in intra slices. An encoding approach based on Convolutional Neural Networks is explored to partly substitute classical heuristics-based encoder speed-ups by a systematic and automatic process. The solution allows controlling the trade-off between complexity and coding gains, in intra slices, with one single parameter. This algorithm was proposed at the Call for Proposals of the Joint Video Exploration Team (JVET) on video compression with capability beyond HEVC. In All Intra configuration, for a given allowed topology of splits, a speed-up of ×2 is obtained without BD-rate loss, or a speed-up above ×4 with a loss below 1% in BD-rate.\",\"PeriodicalId\":167723,\"journal\":{\"name\":\"2019 Data Compression Conference (DCC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Data Compression Conference (DCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2019.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文提供了一种基于深度学习的编码器方法的技术概述,旨在优化下一代混合视频编码器,以驱动片内块划分。探索了一种基于卷积神经网络的编码方法,通过系统和自动的过程部分替代经典的启发式编码器加速。该解决方案允许控制复杂度和编码增益之间的权衡,在片内,用一个参数。该算法是在联合视频探索小组(JVET)的视频压缩方案征集中提出的,具有超越HEVC的能力。在All Intra配置中,对于给定的允许的分割拓扑,在没有bd速率损失的情况下获得×2的加速,或者在bd速率损失低于1%的情况下获得×4以上的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN-Based Driving of Block Partitioning for Intra Slices Encoding
This paper provides a technical overview of a deep-learning-based encoder method aiming at optimizing next generation hybrid video encoders for driving the block partitioning in intra slices. An encoding approach based on Convolutional Neural Networks is explored to partly substitute classical heuristics-based encoder speed-ups by a systematic and automatic process. The solution allows controlling the trade-off between complexity and coding gains, in intra slices, with one single parameter. This algorithm was proposed at the Call for Proposals of the Joint Video Exploration Team (JVET) on video compression with capability beyond HEVC. In All Intra configuration, for a given allowed topology of splits, a speed-up of ×2 is obtained without BD-rate loss, or a speed-up above ×4 with a loss below 1% in BD-rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信