内在动机强化学习控制与连续的行动

Ildefons Magrans de Abril, R. Kanai
{"title":"内在动机强化学习控制与连续的行动","authors":"Ildefons Magrans de Abril, R. Kanai","doi":"10.1109/ICIIBMS.2017.8279714","DOIUrl":null,"url":null,"abstract":"We propose a more practical method to use empowerment as intrinsic reward within a reinforcement learning setting when states and actions are continuous. Our method builds upon two ideas: i) To take advantage of a new Bellman-like equation of empowerment and ii) to simplify the computation of the local rewards by avoiding the approximation of complex distributions over continuous states and actions.","PeriodicalId":122969,"journal":{"name":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsically-motivated reinforcement learning for control with continuous actions\",\"authors\":\"Ildefons Magrans de Abril, R. Kanai\",\"doi\":\"10.1109/ICIIBMS.2017.8279714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a more practical method to use empowerment as intrinsic reward within a reinforcement learning setting when states and actions are continuous. Our method builds upon two ideas: i) To take advantage of a new Bellman-like equation of empowerment and ii) to simplify the computation of the local rewards by avoiding the approximation of complex distributions over continuous states and actions.\",\"PeriodicalId\":122969,\"journal\":{\"name\":\"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIBMS.2017.8279714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2017.8279714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种更实用的方法,当状态和动作是连续的时,在强化学习设置中使用授权作为内在奖励。我们的方法建立在两个思想之上:i)利用新的Bellman-like授权方程ii)通过避免在连续状态和动作上近似复杂分布来简化局部奖励的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrinsically-motivated reinforcement learning for control with continuous actions
We propose a more practical method to use empowerment as intrinsic reward within a reinforcement learning setting when states and actions are continuous. Our method builds upon two ideas: i) To take advantage of a new Bellman-like equation of empowerment and ii) to simplify the computation of the local rewards by avoiding the approximation of complex distributions over continuous states and actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信