基于深度自编码器的主动高效编码自校准主动双目视觉

Charles Wilmot, Bertram E. Shi, J. Triesch
{"title":"基于深度自编码器的主动高效编码自校准主动双目视觉","authors":"Charles Wilmot, Bertram E. Shi, J. Triesch","doi":"10.1109/ICDL-EpiRob48136.2020.9278037","DOIUrl":null,"url":null,"abstract":"We present a model of the self-calibration of active binocular vision comprising the simultaneous learning of visual representations, vergence, and pursuit eye movements. The model follows the principle of Active Efficient Coding (AEC), a recent extension of the classic Efficient Coding Hypothesis to active perception. In contrast to previous AEC models, the present model uses deep autoencoders to learn sensory representations. We also propose a new formulation of the intrinsic motivation signal that guides the learning of behavior. We demonstrate the performance of the model in simulations.","PeriodicalId":114948,"journal":{"name":"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-Calibrating Active Binocular Vision via Active Efficient Coding with Deep Autoencoders\",\"authors\":\"Charles Wilmot, Bertram E. Shi, J. Triesch\",\"doi\":\"10.1109/ICDL-EpiRob48136.2020.9278037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a model of the self-calibration of active binocular vision comprising the simultaneous learning of visual representations, vergence, and pursuit eye movements. The model follows the principle of Active Efficient Coding (AEC), a recent extension of the classic Efficient Coding Hypothesis to active perception. In contrast to previous AEC models, the present model uses deep autoencoders to learn sensory representations. We also propose a new formulation of the intrinsic motivation signal that guides the learning of behavior. We demonstrate the performance of the model in simulations.\",\"PeriodicalId\":114948,\"journal\":{\"name\":\"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL-EpiRob48136.2020.9278037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL-EpiRob48136.2020.9278037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个主动双眼视觉的自校准模型,包括视觉表征,收敛和追求眼球运动的同时学习。该模型遵循主动有效编码(AEC)原则,这是经典有效编码假说对主动感知的最新扩展。与以前的AEC模型相比,本模型使用深度自编码器来学习感官表征。我们还提出了指导行为学习的内在动机信号的新公式。通过仿真验证了该模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Calibrating Active Binocular Vision via Active Efficient Coding with Deep Autoencoders
We present a model of the self-calibration of active binocular vision comprising the simultaneous learning of visual representations, vergence, and pursuit eye movements. The model follows the principle of Active Efficient Coding (AEC), a recent extension of the classic Efficient Coding Hypothesis to active perception. In contrast to previous AEC models, the present model uses deep autoencoders to learn sensory representations. We also propose a new formulation of the intrinsic motivation signal that guides the learning of behavior. We demonstrate the performance of the model in simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信