基于对比鉴别器的增强star - gan语音转换

Shijing Si, Jianzong Wang, Xulong Zhang, Xiaoyang Qu, Ning Cheng, Jing Xiao
{"title":"基于对比鉴别器的增强star - gan语音转换","authors":"Shijing Si, Jianzong Wang, Xulong Zhang, Xiaoyang Qu, Ning Cheng, Jing Xiao","doi":"10.48550/arXiv.2209.10088","DOIUrl":null,"url":null,"abstract":"Nonparallel multi-domain voice conversion methods such as the StarGAN-VCs have been widely applied in many scenarios. However, the training of these models usually poses a challenge due to their complicated adversarial network architectures. To address this, in this work we leverage the state-of-the-art contrastive learning techniques and incorporate an efficient Siamese network structure into the StarGAN discriminator. Our method is called SimSiam-StarGAN-VC and it boosts the training stability and effectively prevents the discriminator overfitting issue in the training process. We conduct experiments on the Voice Conversion Challenge (VCC 2018) dataset, plus a user study to validate the performance of our framework. Our experimental results show that SimSiam-StarGAN-VC significantly outperforms existing StarGAN-VC methods in terms of both the objective and subjective metrics.","PeriodicalId":281152,"journal":{"name":"International Conference on Neural Information Processing","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Boosting Star-GANs for Voice Conversion with Contrastive Discriminator\",\"authors\":\"Shijing Si, Jianzong Wang, Xulong Zhang, Xiaoyang Qu, Ning Cheng, Jing Xiao\",\"doi\":\"10.48550/arXiv.2209.10088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonparallel multi-domain voice conversion methods such as the StarGAN-VCs have been widely applied in many scenarios. However, the training of these models usually poses a challenge due to their complicated adversarial network architectures. To address this, in this work we leverage the state-of-the-art contrastive learning techniques and incorporate an efficient Siamese network structure into the StarGAN discriminator. Our method is called SimSiam-StarGAN-VC and it boosts the training stability and effectively prevents the discriminator overfitting issue in the training process. We conduct experiments on the Voice Conversion Challenge (VCC 2018) dataset, plus a user study to validate the performance of our framework. Our experimental results show that SimSiam-StarGAN-VC significantly outperforms existing StarGAN-VC methods in terms of both the objective and subjective metrics.\",\"PeriodicalId\":281152,\"journal\":{\"name\":\"International Conference on Neural Information Processing\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Neural Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.10088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.10088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

诸如StarGAN-VCs等非并行多域语音转换方法在许多场景中得到了广泛的应用。然而,由于其复杂的对抗网络结构,这些模型的训练通常会带来挑战。为了解决这个问题,在这项工作中,我们利用了最先进的对比学习技术,并将有效的暹罗网络结构整合到StarGAN鉴别器中。我们的方法被称为SimSiam-StarGAN-VC,它提高了训练的稳定性,有效地防止了训练过程中的判别器过拟合问题。我们在语音转换挑战(VCC 2018)数据集上进行了实验,并进行了用户研究以验证我们框架的性能。实验结果表明,SimSiam-StarGAN-VC在客观和主观指标上都明显优于现有的StarGAN-VC方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting Star-GANs for Voice Conversion with Contrastive Discriminator
Nonparallel multi-domain voice conversion methods such as the StarGAN-VCs have been widely applied in many scenarios. However, the training of these models usually poses a challenge due to their complicated adversarial network architectures. To address this, in this work we leverage the state-of-the-art contrastive learning techniques and incorporate an efficient Siamese network structure into the StarGAN discriminator. Our method is called SimSiam-StarGAN-VC and it boosts the training stability and effectively prevents the discriminator overfitting issue in the training process. We conduct experiments on the Voice Conversion Challenge (VCC 2018) dataset, plus a user study to validate the performance of our framework. Our experimental results show that SimSiam-StarGAN-VC significantly outperforms existing StarGAN-VC methods in terms of both the objective and subjective metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信