基于毫米波雷达的三维场景重建自我运动估计方法

Zhikai Yang, Zhanyu Zhu
{"title":"基于毫米波雷达的三维场景重建自我运动估计方法","authors":"Zhikai Yang, Zhanyu Zhu","doi":"10.1109/IHMSC55436.2022.00013","DOIUrl":null,"url":null,"abstract":"Ego-motion estimation is important in unknown scenario reconstruction and detections, which is critical to implementing unmanned and intelligent autonomous driving. Compared to optical devices, such as camera and Lidar, millimeter-wave radar is independent of optical conditions. Based on millimeter-wave point cloud imaging technique and target random scattering characteristics, an ego-motion estimation method using millimeter-wave radar is proposed in this paper, which can be applied to 3D scenario reconstruction in the closed environment. To estimate the motion parameters of the platform, linear fitting, key points extraction and registration are introduced. The proposed method is verified by experiments in real scenes using a single-chip millimeter-wave radar and TurtleBot 2 platform.","PeriodicalId":447862,"journal":{"name":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Ego-Motion Estimation Method Using Millimeter-Wave Radar in 3D Scene Reconstruction\",\"authors\":\"Zhikai Yang, Zhanyu Zhu\",\"doi\":\"10.1109/IHMSC55436.2022.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ego-motion estimation is important in unknown scenario reconstruction and detections, which is critical to implementing unmanned and intelligent autonomous driving. Compared to optical devices, such as camera and Lidar, millimeter-wave radar is independent of optical conditions. Based on millimeter-wave point cloud imaging technique and target random scattering characteristics, an ego-motion estimation method using millimeter-wave radar is proposed in this paper, which can be applied to 3D scenario reconstruction in the closed environment. To estimate the motion parameters of the platform, linear fitting, key points extraction and registration are introduced. The proposed method is verified by experiments in real scenes using a single-chip millimeter-wave radar and TurtleBot 2 platform.\",\"PeriodicalId\":447862,\"journal\":{\"name\":\"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC55436.2022.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC55436.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

自我运动估计在未知场景重建和检测中具有重要意义,是实现无人驾驶和智能自动驾驶的关键。与照相机和激光雷达等光学设备相比,毫米波雷达不受光学条件的影响。基于毫米波点云成像技术和目标随机散射特性,提出了一种基于毫米波雷达的自运动估计方法,可应用于封闭环境下的三维场景重建。为了估计平台的运动参数,引入了线性拟合、关键点提取和配准。基于单片机毫米波雷达和TurtleBot 2平台的真实场景实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ego-Motion Estimation Method Using Millimeter-Wave Radar in 3D Scene Reconstruction
Ego-motion estimation is important in unknown scenario reconstruction and detections, which is critical to implementing unmanned and intelligent autonomous driving. Compared to optical devices, such as camera and Lidar, millimeter-wave radar is independent of optical conditions. Based on millimeter-wave point cloud imaging technique and target random scattering characteristics, an ego-motion estimation method using millimeter-wave radar is proposed in this paper, which can be applied to 3D scenario reconstruction in the closed environment. To estimate the motion parameters of the platform, linear fitting, key points extraction and registration are introduced. The proposed method is verified by experiments in real scenes using a single-chip millimeter-wave radar and TurtleBot 2 platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信