基于多层神经网络的磁共振图像分辨率增强

Hong Yan, J. Mao, Benjamin Chen
{"title":"基于多层神经网络的磁共振图像分辨率增强","authors":"Hong Yan, J. Mao, Benjamin Chen","doi":"10.1109/CBMS.1992.245027","DOIUrl":null,"url":null,"abstract":"A magnetic resonance image may contain truncation artifacts if there are not enough high-frequency data when the conventional Fourier transform method is used for reconstruction. The authors propose a method for reducing the artifacts using a multilayer neural network. The network consists of one linear output layer and at least one nonlinear hidden layer. In this method the missing high-frequency components are predicted based on known low-frequency components and are used to improve the resolution of the image. The method is tested with simulated data with good results.<<ETX>>","PeriodicalId":197891,"journal":{"name":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MR image resolution enhancement using a multi-layer neural network\",\"authors\":\"Hong Yan, J. Mao, Benjamin Chen\",\"doi\":\"10.1109/CBMS.1992.245027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A magnetic resonance image may contain truncation artifacts if there are not enough high-frequency data when the conventional Fourier transform method is used for reconstruction. The authors propose a method for reducing the artifacts using a multilayer neural network. The network consists of one linear output layer and at least one nonlinear hidden layer. In this method the missing high-frequency components are predicted based on known low-frequency components and are used to improve the resolution of the image. The method is tested with simulated data with good results.<<ETX>>\",\"PeriodicalId\":197891,\"journal\":{\"name\":\"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.1992.245027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.1992.245027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当使用传统的傅里叶变换方法进行重构时,如果没有足够的高频数据,则磁共振图像可能包含截断伪影。作者提出了一种利用多层神经网络减少伪影的方法。该网络由一个线性输出层和至少一个非线性隐藏层组成。该方法基于已知的低频分量预测缺失的高频分量,并用于提高图像的分辨率。用仿真数据对该方法进行了验证,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MR image resolution enhancement using a multi-layer neural network
A magnetic resonance image may contain truncation artifacts if there are not enough high-frequency data when the conventional Fourier transform method is used for reconstruction. The authors propose a method for reducing the artifacts using a multilayer neural network. The network consists of one linear output layer and at least one nonlinear hidden layer. In this method the missing high-frequency components are predicted based on known low-frequency components and are used to improve the resolution of the image. The method is tested with simulated data with good results.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信