{"title":"走向开放的图形化工具构建框架","authors":"Edgars Rencis, J. Barzdins, Sergejs Kozlovics","doi":"10.2478/v10143-011-0011-8","DOIUrl":null,"url":null,"abstract":"Towards Open Graphical Tool-Building Framework Nowadays, there are many frameworks for developing domain-specific tools. However, if we want to create a really sophisticated tool with specific functionality requirements, it is not always an easy task to do. Although tool-building platforms offer some means for extending the tool functionality and accessing it from external applications, it usually requires a deep understanding of various technical implementation details. In this paper we try to go one step closer to a really open graphical tool-building framework that would allow both to change the behavior of the tool and to access the tool from the outside easily. We start by defining a specialization of metamodels which is a great and powerful facility itself. Then we go on and show how this can be applied in the field of graphical domain-specific tool building. The approach is demonstrated on an example of a subset of UML activity diagrams. The benefits of the approach are also clearly indicated. These include a natural and intuitive definition of tools, a strict logic/presentation separation and the openness for extensions as well as for external applications.","PeriodicalId":211660,"journal":{"name":"Sci. J. Riga Tech. Univ. Ser. Comput. Sci.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards Open Graphical Tool-Building Framework\",\"authors\":\"Edgars Rencis, J. Barzdins, Sergejs Kozlovics\",\"doi\":\"10.2478/v10143-011-0011-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Towards Open Graphical Tool-Building Framework Nowadays, there are many frameworks for developing domain-specific tools. However, if we want to create a really sophisticated tool with specific functionality requirements, it is not always an easy task to do. Although tool-building platforms offer some means for extending the tool functionality and accessing it from external applications, it usually requires a deep understanding of various technical implementation details. In this paper we try to go one step closer to a really open graphical tool-building framework that would allow both to change the behavior of the tool and to access the tool from the outside easily. We start by defining a specialization of metamodels which is a great and powerful facility itself. Then we go on and show how this can be applied in the field of graphical domain-specific tool building. The approach is demonstrated on an example of a subset of UML activity diagrams. The benefits of the approach are also clearly indicated. These include a natural and intuitive definition of tools, a strict logic/presentation separation and the openness for extensions as well as for external applications.\",\"PeriodicalId\":211660,\"journal\":{\"name\":\"Sci. J. Riga Tech. Univ. Ser. Comput. Sci.\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sci. J. Riga Tech. Univ. Ser. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/v10143-011-0011-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. J. Riga Tech. Univ. Ser. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/v10143-011-0011-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Open Graphical Tool-Building Framework Nowadays, there are many frameworks for developing domain-specific tools. However, if we want to create a really sophisticated tool with specific functionality requirements, it is not always an easy task to do. Although tool-building platforms offer some means for extending the tool functionality and accessing it from external applications, it usually requires a deep understanding of various technical implementation details. In this paper we try to go one step closer to a really open graphical tool-building framework that would allow both to change the behavior of the tool and to access the tool from the outside easily. We start by defining a specialization of metamodels which is a great and powerful facility itself. Then we go on and show how this can be applied in the field of graphical domain-specific tool building. The approach is demonstrated on an example of a subset of UML activity diagrams. The benefits of the approach are also clearly indicated. These include a natural and intuitive definition of tools, a strict logic/presentation separation and the openness for extensions as well as for external applications.