摘要:研究基于融合的深度学习架构用于烟雾检测

Benjamin M Marlin, Meet P. Vadera
{"title":"摘要:研究基于融合的深度学习架构用于烟雾检测","authors":"Benjamin M Marlin, Meet P. Vadera","doi":"10.1109/CHASE48038.2019.00011","DOIUrl":null,"url":null,"abstract":"Supervised deep learning methods have the ability to extract useful features from raw data when a sufficient volume of labeled data is available for training. However, in emerging application areas such as mobile health, the high cost of data collection often precludes collecting large-scale labeled data sets. As a result, machine learning pipelines based on hand-engineered features remain common. In this paper, we investigate architectures for combining hand-engineered features with deep learning-based feature extraction from raw data to enhance prediction performance on small labeled data sets. We use smoking puff detection from wearable sensor data as an example application domain.","PeriodicalId":137790,"journal":{"name":"2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Poster Abstract: Investigating Fusion-Based Deep Learning Architectures for Smoking Puff Detection\",\"authors\":\"Benjamin M Marlin, Meet P. Vadera\",\"doi\":\"10.1109/CHASE48038.2019.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervised deep learning methods have the ability to extract useful features from raw data when a sufficient volume of labeled data is available for training. However, in emerging application areas such as mobile health, the high cost of data collection often precludes collecting large-scale labeled data sets. As a result, machine learning pipelines based on hand-engineered features remain common. In this paper, we investigate architectures for combining hand-engineered features with deep learning-based feature extraction from raw data to enhance prediction performance on small labeled data sets. We use smoking puff detection from wearable sensor data as an example application domain.\",\"PeriodicalId\":137790,\"journal\":{\"name\":\"2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHASE48038.2019.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHASE48038.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当有足够数量的标记数据可用于训练时,监督深度学习方法能够从原始数据中提取有用的特征。然而,在诸如移动医疗等新兴应用领域,数据收集的高成本往往阻碍了大规模标记数据集的收集。因此,基于手工设计特征的机器学习管道仍然很常见。在本文中,我们研究了将手工设计特征与基于深度学习的原始数据特征提取相结合的架构,以增强对小标记数据集的预测性能。我们以可穿戴传感器数据中的烟雾检测作为示例应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster Abstract: Investigating Fusion-Based Deep Learning Architectures for Smoking Puff Detection
Supervised deep learning methods have the ability to extract useful features from raw data when a sufficient volume of labeled data is available for training. However, in emerging application areas such as mobile health, the high cost of data collection often precludes collecting large-scale labeled data sets. As a result, machine learning pipelines based on hand-engineered features remain common. In this paper, we investigate architectures for combining hand-engineered features with deep learning-based feature extraction from raw data to enhance prediction performance on small labeled data sets. We use smoking puff detection from wearable sensor data as an example application domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信