基于概率-可能性-均值(离散数据挖掘算法)的数据挖掘新方法

A. Tiwari, G. Ramakrishna, L. Sharma, S. Kashyap
{"title":"基于概率-可能性-均值(离散数据挖掘算法)的数据挖掘新方法","authors":"A. Tiwari, G. Ramakrishna, L. Sharma, S. Kashyap","doi":"10.1109/ICCCIS48478.2019.8974501","DOIUrl":null,"url":null,"abstract":"The possibilistic mean is reviewed in this paper for prediction of academic data. The mean values of the probabilistic study of the possibilistic mean is classified by fuzzy numbers is the main result of this paper. This result is applied on the prediction of the academic performance over the academic data. Basically, this paper presents an analysis of academic data by fuzzy numbers. The variance of fuzzy numbers classes the big data into dynamic and compact data. This system performs efficiently over the various characteristic of fuzzy numbers. The illustration is also presented in this paper.","PeriodicalId":436154,"journal":{"name":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Data Mining Method based on Probabilistic-Possibilistic-Mean (Discrete Data Mining Algorithm)\",\"authors\":\"A. Tiwari, G. Ramakrishna, L. Sharma, S. Kashyap\",\"doi\":\"10.1109/ICCCIS48478.2019.8974501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possibilistic mean is reviewed in this paper for prediction of academic data. The mean values of the probabilistic study of the possibilistic mean is classified by fuzzy numbers is the main result of this paper. This result is applied on the prediction of the academic performance over the academic data. Basically, this paper presents an analysis of academic data by fuzzy numbers. The variance of fuzzy numbers classes the big data into dynamic and compact data. This system performs efficiently over the various characteristic of fuzzy numbers. The illustration is also presented in this paper.\",\"PeriodicalId\":436154,\"journal\":{\"name\":\"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCIS48478.2019.8974501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS48478.2019.8974501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了可能性均值在学术数据预测中的应用。用模糊数对可能性均值进行分类的概率研究是本文的主要成果。这一结果被应用于对学业成绩的预测。本文基本上是用模糊数对学术数据进行分析。模糊数的方差将大数据分为动态数据和紧凑数据。该系统有效地克服了模糊数的各种特性。并给出了实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Data Mining Method based on Probabilistic-Possibilistic-Mean (Discrete Data Mining Algorithm)
The possibilistic mean is reviewed in this paper for prediction of academic data. The mean values of the probabilistic study of the possibilistic mean is classified by fuzzy numbers is the main result of this paper. This result is applied on the prediction of the academic performance over the academic data. Basically, this paper presents an analysis of academic data by fuzzy numbers. The variance of fuzzy numbers classes the big data into dynamic and compact data. This system performs efficiently over the various characteristic of fuzzy numbers. The illustration is also presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信