基于超体素的脑磁共振图像非监督异常不对称检测方法

S. B. Martins, Guilherme C. S. Ruppert, F. Reis, C. L. Yasuda, A. Falcão
{"title":"基于超体素的脑磁共振图像非监督异常不对称检测方法","authors":"S. B. Martins, Guilherme C. S. Ruppert, F. Reis, C. L. Yasuda, A. Falcão","doi":"10.1109/ISBI.2019.8759166","DOIUrl":null,"url":null,"abstract":"Several pathologies are associated with abnormal asymmetries in brain images and their automated detection can improve diagnosis, segmentation, and automatic analysis of abnormal brain tissues (e.g., lesions). In this paper, we introduce a fully unsupervised supervoxel-based approach for abnormal asymmetry detection in MR images of the brain. Also, we present a new method for symmetrical supervoxel extraction called SymmISF. The experiments over a large set of MR-TI images reveal a higher detection rates and considerably less false positives in comparison to a deep learning auto-encoder approach.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Supervoxel-Based Approach for Unsupervised Abnormal Asymmetry Detection in Mr Images of the Brain\",\"authors\":\"S. B. Martins, Guilherme C. S. Ruppert, F. Reis, C. L. Yasuda, A. Falcão\",\"doi\":\"10.1109/ISBI.2019.8759166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several pathologies are associated with abnormal asymmetries in brain images and their automated detection can improve diagnosis, segmentation, and automatic analysis of abnormal brain tissues (e.g., lesions). In this paper, we introduce a fully unsupervised supervoxel-based approach for abnormal asymmetry detection in MR images of the brain. Also, we present a new method for symmetrical supervoxel extraction called SymmISF. The experiments over a large set of MR-TI images reveal a higher detection rates and considerably less false positives in comparison to a deep learning auto-encoder approach.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

一些病理与脑图像中的异常不对称有关,它们的自动检测可以改善异常脑组织(如病变)的诊断、分割和自动分析。在本文中,我们介绍了一种完全无监督的基于超体素的方法,用于大脑MR图像的异常不对称性检测。此外,我们还提出了一种新的对称超体素提取方法,称为SymmISF。在大量MR-TI图像上进行的实验表明,与深度学习自动编码器方法相比,该方法具有更高的检测率和更少的误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Supervoxel-Based Approach for Unsupervised Abnormal Asymmetry Detection in Mr Images of the Brain
Several pathologies are associated with abnormal asymmetries in brain images and their automated detection can improve diagnosis, segmentation, and automatic analysis of abnormal brain tissues (e.g., lesions). In this paper, we introduce a fully unsupervised supervoxel-based approach for abnormal asymmetry detection in MR images of the brain. Also, we present a new method for symmetrical supervoxel extraction called SymmISF. The experiments over a large set of MR-TI images reveal a higher detection rates and considerably less false positives in comparison to a deep learning auto-encoder approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信