采用主成分追踪法对关键词进行背景主题分解

Kerui Min, Zhengdong Zhang, John Wright, Yi Ma
{"title":"采用主成分追踪法对关键词进行背景主题分解","authors":"Kerui Min, Zhengdong Zhang, John Wright, Yi Ma","doi":"10.1145/1871437.1871475","DOIUrl":null,"url":null,"abstract":"Low-dimensional topic models have been proven very useful for modeling a large corpus of documents that share a relatively small number of topics. Dimensionality reduction tools such as Principal Component Analysis or Latent Semantic Indexing (LSI) have been widely adopted for document modeling, analysis, and retrieval. In this paper, we contend that a more pertinent model for a document corpus as the combination of an (approximately) low-dimensional topic model for the corpus and a sparse model for the keywords of individual documents. For such a joint topic-document model, LSI or PCA is no longer appropriate to analyze the corpus data. We hence introduce a powerful new tool called Principal Component Pursuit that can effectively decompose the low-dimensional and the sparse components of such corpus data. We give empirical results on data synthesized with a Latent Dirichlet Allocation (LDA) mode to validate the new model. We then show that for real document data analysis, the new tool significantly reduces the perplexity and improves retrieval performance compared to classical baselines.","PeriodicalId":310611,"journal":{"name":"Proceedings of the 19th ACM international conference on Information and knowledge management","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"Decomposing background topics from keywords by principal component pursuit\",\"authors\":\"Kerui Min, Zhengdong Zhang, John Wright, Yi Ma\",\"doi\":\"10.1145/1871437.1871475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-dimensional topic models have been proven very useful for modeling a large corpus of documents that share a relatively small number of topics. Dimensionality reduction tools such as Principal Component Analysis or Latent Semantic Indexing (LSI) have been widely adopted for document modeling, analysis, and retrieval. In this paper, we contend that a more pertinent model for a document corpus as the combination of an (approximately) low-dimensional topic model for the corpus and a sparse model for the keywords of individual documents. For such a joint topic-document model, LSI or PCA is no longer appropriate to analyze the corpus data. We hence introduce a powerful new tool called Principal Component Pursuit that can effectively decompose the low-dimensional and the sparse components of such corpus data. We give empirical results on data synthesized with a Latent Dirichlet Allocation (LDA) mode to validate the new model. We then show that for real document data analysis, the new tool significantly reduces the perplexity and improves retrieval performance compared to classical baselines.\",\"PeriodicalId\":310611,\"journal\":{\"name\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1871437.1871475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871437.1871475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

摘要

低维主题模型已被证明对于为共享相对较少主题的大型文档语料库建模非常有用。诸如主成分分析或潜在语义索引(LSI)等降维工具已广泛用于文档建模、分析和检索。在本文中,我们认为一个更合适的文档语料库模型是语料库的(近似)低维主题模型和单个文档关键字的稀疏模型的结合。对于这种联合主题-文档模型,LSI或PCA不再适合分析语料库数据。因此,我们引入了一个强大的新工具,称为主成分追踪,可以有效地分解这些语料库数据的低维和稀疏成分。我们用潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)模式合成的数据给出了实证结果来验证新模型。在实际文档数据分析中,与经典基线相比,新工具显著降低了困惑度,提高了检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposing background topics from keywords by principal component pursuit
Low-dimensional topic models have been proven very useful for modeling a large corpus of documents that share a relatively small number of topics. Dimensionality reduction tools such as Principal Component Analysis or Latent Semantic Indexing (LSI) have been widely adopted for document modeling, analysis, and retrieval. In this paper, we contend that a more pertinent model for a document corpus as the combination of an (approximately) low-dimensional topic model for the corpus and a sparse model for the keywords of individual documents. For such a joint topic-document model, LSI or PCA is no longer appropriate to analyze the corpus data. We hence introduce a powerful new tool called Principal Component Pursuit that can effectively decompose the low-dimensional and the sparse components of such corpus data. We give empirical results on data synthesized with a Latent Dirichlet Allocation (LDA) mode to validate the new model. We then show that for real document data analysis, the new tool significantly reduces the perplexity and improves retrieval performance compared to classical baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信