半精度浮点格式的PageRank:机遇与挑战

A. S. Molahosseini, H. Vandierendonck
{"title":"半精度浮点格式的PageRank:机遇与挑战","authors":"A. S. Molahosseini, H. Vandierendonck","doi":"10.1109/HPEC43674.2020.9286179","DOIUrl":null,"url":null,"abstract":"Mixed-precision computation has been proposed as a means to accelerate iterative algorithms as it can reduce the memory bandwidth and cache effectiveness. This paper aims for further memory traffic reduction via introducing new half-precision (16 bit) data formats customized for PageRank. We develop two formats. A first format builds on the observation that the exponents of about 99% of PageRank values are tightly distributed around the exponent of the inverse of the number of vertices. A second format builds on the observation that 6 exponent bits are sufficient to capture the full dynamic range of PageRank values. Our floating-point formats provide less precision compared to standard IEEE 754 formats, but sufficient dynamic range for PageRank. The experimental results on various size graphs show that the proposed formats can achieve an accuracy of le-4., which is an improvement over the state of the art. Due to random memory access patterns in the algorithm, performance improvements over our highly tuned baseline are 1.5% at best.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Half-Precision Floating-Point Formats for PageRank: Opportunities and Challenges\",\"authors\":\"A. S. Molahosseini, H. Vandierendonck\",\"doi\":\"10.1109/HPEC43674.2020.9286179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixed-precision computation has been proposed as a means to accelerate iterative algorithms as it can reduce the memory bandwidth and cache effectiveness. This paper aims for further memory traffic reduction via introducing new half-precision (16 bit) data formats customized for PageRank. We develop two formats. A first format builds on the observation that the exponents of about 99% of PageRank values are tightly distributed around the exponent of the inverse of the number of vertices. A second format builds on the observation that 6 exponent bits are sufficient to capture the full dynamic range of PageRank values. Our floating-point formats provide less precision compared to standard IEEE 754 formats, but sufficient dynamic range for PageRank. The experimental results on various size graphs show that the proposed formats can achieve an accuracy of le-4., which is an improvement over the state of the art. Due to random memory access patterns in the algorithm, performance improvements over our highly tuned baseline are 1.5% at best.\",\"PeriodicalId\":168544,\"journal\":{\"name\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC43674.2020.9286179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

混合精度计算可以减少内存带宽和缓存效率,因此被提出作为加速迭代算法的一种手段。本文旨在通过引入为PageRank定制的新的半精度(16位)数据格式来进一步减少内存流量。我们开发了两种格式。第一种格式建立在以下观察的基础上:大约99%的PageRank值的指数紧密地分布在顶点数量的倒数指数周围。第二种格式建立在观察到6个指数位足以捕获PageRank值的完整动态范围的基础上。与标准IEEE 754格式相比,我们的浮点格式提供的精度较低,但PageRank的动态范围足够。在不同尺寸图上的实验结果表明,所提出的格式可以达到le-4的精度。相比目前的技术水平,这是一个进步。由于算法中的随机内存访问模式,在我们高度调优的基线上,性能改进最多为1.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Half-Precision Floating-Point Formats for PageRank: Opportunities and Challenges
Mixed-precision computation has been proposed as a means to accelerate iterative algorithms as it can reduce the memory bandwidth and cache effectiveness. This paper aims for further memory traffic reduction via introducing new half-precision (16 bit) data formats customized for PageRank. We develop two formats. A first format builds on the observation that the exponents of about 99% of PageRank values are tightly distributed around the exponent of the inverse of the number of vertices. A second format builds on the observation that 6 exponent bits are sufficient to capture the full dynamic range of PageRank values. Our floating-point formats provide less precision compared to standard IEEE 754 formats, but sufficient dynamic range for PageRank. The experimental results on various size graphs show that the proposed formats can achieve an accuracy of le-4., which is an improvement over the state of the art. Due to random memory access patterns in the algorithm, performance improvements over our highly tuned baseline are 1.5% at best.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信