金字塔卷积神经网络与瓶颈残差模块在多光谱图像分类中的应用

Yukun Huang, Jingbo Wei, Wenchao Tang, Chaoqi He
{"title":"金字塔卷积神经网络与瓶颈残差模块在多光谱图像分类中的应用","authors":"Yukun Huang, Jingbo Wei, Wenchao Tang, Chaoqi He","doi":"10.1109/IGARSS39084.2020.9324314","DOIUrl":null,"url":null,"abstract":"The newly emerging classifier using deep network architectures and pyramid bottleneck modules exhibits stronger capability than traditional classifiers. However, they are only suitable for color images or hyperspectral images due to the structural, textural and spectral differences against multispectral images. In this paper, a new network is designed for the classification of high-resolution multispectral images. The new network follows the architecture of pyramid residual network, but the input size, filter size, and filter number of each layer are totally different. These designs make the pyramid residual network conforming to the multispectral advantages of spatial resolutions so as to improve classification performance. Experiments on the satellite multispectral data from GF-1 and RapidEye demonstrate the superiority of the new network.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pyramid Convolutional Neural Networks and Bottleneck Residual Modules for Classification of Multispectral Images\",\"authors\":\"Yukun Huang, Jingbo Wei, Wenchao Tang, Chaoqi He\",\"doi\":\"10.1109/IGARSS39084.2020.9324314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The newly emerging classifier using deep network architectures and pyramid bottleneck modules exhibits stronger capability than traditional classifiers. However, they are only suitable for color images or hyperspectral images due to the structural, textural and spectral differences against multispectral images. In this paper, a new network is designed for the classification of high-resolution multispectral images. The new network follows the architecture of pyramid residual network, but the input size, filter size, and filter number of each layer are totally different. These designs make the pyramid residual network conforming to the multispectral advantages of spatial resolutions so as to improve classification performance. Experiments on the satellite multispectral data from GF-1 and RapidEye demonstrate the superiority of the new network.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9324314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用深度网络结构和金字塔瓶颈模块的分类器比传统分类器表现出更强的分类能力。然而,由于与多光谱图像的结构、纹理和光谱差异,它们只适用于彩色图像或高光谱图像。本文设计了一种新的高分辨率多光谱图像分类网络。新网络遵循金字塔残差网络的架构,但每层的输入大小、滤波器大小和滤波器数量完全不同。这些设计使金字塔残差网络符合空间分辨率的多光谱优势,从而提高分类性能。在GF-1和RapidEye卫星多光谱数据上的实验证明了该网络的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pyramid Convolutional Neural Networks and Bottleneck Residual Modules for Classification of Multispectral Images
The newly emerging classifier using deep network architectures and pyramid bottleneck modules exhibits stronger capability than traditional classifiers. However, they are only suitable for color images or hyperspectral images due to the structural, textural and spectral differences against multispectral images. In this paper, a new network is designed for the classification of high-resolution multispectral images. The new network follows the architecture of pyramid residual network, but the input size, filter size, and filter number of each layer are totally different. These designs make the pyramid residual network conforming to the multispectral advantages of spatial resolutions so as to improve classification performance. Experiments on the satellite multispectral data from GF-1 and RapidEye demonstrate the superiority of the new network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信