数据驱动的电动飞机能源管理架构

M. Kamal, Jin Wei, G. Mendis
{"title":"数据驱动的电动飞机能源管理架构","authors":"M. Kamal, Jin Wei, G. Mendis","doi":"10.1109/ISAP.2017.8071395","DOIUrl":null,"url":null,"abstract":"This paper proposes an attack-resilient ANFIS-DBN based energy management architecture for a hybrid emergency power system of More-Electric Aircrafts (MEAs). Our proposed architecture develops a Deep Belief Network (DBN) stacked Adaptive Neuro-Fuzzy Interference System (ANFIS)-based method to evaluate the integrity of the power output of the fuel-cell in the fuel-cell based hybrid auxiliary power unit (APU), which is vulnerable to the cyber-attacks and critical for the effective energy management and emergency control. Our ANFIS-DBN-based method achieves the integrity evaluation by leveraging the real-time measures on the State of Charge (SOC) of the battery, power output of the ultra-capacitor and the load profile. In our simulation, we evaluate the performance of our proposed ANFIS-DBN-based method to support the integrity of the Energy Management Strategies (EMSs) used in hybrid emergency power system for more-electric aircrafts by using MATLAB/Simulink. Our simulation results illustrate the effectiveness of our proposed method in effectively evaluating the integrity of critical data and achieving resilient control.","PeriodicalId":257100,"journal":{"name":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"672 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven energy management architecture for more-electric aircrafts\",\"authors\":\"M. Kamal, Jin Wei, G. Mendis\",\"doi\":\"10.1109/ISAP.2017.8071395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an attack-resilient ANFIS-DBN based energy management architecture for a hybrid emergency power system of More-Electric Aircrafts (MEAs). Our proposed architecture develops a Deep Belief Network (DBN) stacked Adaptive Neuro-Fuzzy Interference System (ANFIS)-based method to evaluate the integrity of the power output of the fuel-cell in the fuel-cell based hybrid auxiliary power unit (APU), which is vulnerable to the cyber-attacks and critical for the effective energy management and emergency control. Our ANFIS-DBN-based method achieves the integrity evaluation by leveraging the real-time measures on the State of Charge (SOC) of the battery, power output of the ultra-capacitor and the load profile. In our simulation, we evaluate the performance of our proposed ANFIS-DBN-based method to support the integrity of the Energy Management Strategies (EMSs) used in hybrid emergency power system for more-electric aircrafts by using MATLAB/Simulink. Our simulation results illustrate the effectiveness of our proposed method in effectively evaluating the integrity of critical data and achieving resilient control.\",\"PeriodicalId\":257100,\"journal\":{\"name\":\"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"volume\":\"672 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2017.8071395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2017.8071395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对多电动飞机混合应急电源系统,提出了一种基于anfiss - dbn的抗攻击能量管理架构。本文提出了一种基于深度信念网络(DBN)堆叠自适应神经模糊干扰系统(ANFIS)的方法来评估燃料电池混合辅助动力装置(APU)中燃料电池输出功率的完整性,该方法容易受到网络攻击,对有效的能量管理和应急控制至关重要。我们基于anfiss - dbn的方法通过利用电池的荷电状态(SOC)、超级电容器的输出功率和负载分布的实时测量来实现完整性评估。在我们的仿真中,我们利用MATLAB/Simulink评估了我们提出的基于anfiss - dbn的方法的性能,以支持多电动飞机混合应急电源系统中使用的能量管理策略(ems)的完整性。我们的仿真结果证明了我们提出的方法在有效评估关键数据完整性和实现弹性控制方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven energy management architecture for more-electric aircrafts
This paper proposes an attack-resilient ANFIS-DBN based energy management architecture for a hybrid emergency power system of More-Electric Aircrafts (MEAs). Our proposed architecture develops a Deep Belief Network (DBN) stacked Adaptive Neuro-Fuzzy Interference System (ANFIS)-based method to evaluate the integrity of the power output of the fuel-cell in the fuel-cell based hybrid auxiliary power unit (APU), which is vulnerable to the cyber-attacks and critical for the effective energy management and emergency control. Our ANFIS-DBN-based method achieves the integrity evaluation by leveraging the real-time measures on the State of Charge (SOC) of the battery, power output of the ultra-capacitor and the load profile. In our simulation, we evaluate the performance of our proposed ANFIS-DBN-based method to support the integrity of the Energy Management Strategies (EMSs) used in hybrid emergency power system for more-electric aircrafts by using MATLAB/Simulink. Our simulation results illustrate the effectiveness of our proposed method in effectively evaluating the integrity of critical data and achieving resilient control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信