学生成绩预测的神经网络方法

Fumiya Okubo, Takayoshi Yamashita, Atsushi Shimada, H. Ogata
{"title":"学生成绩预测的神经网络方法","authors":"Fumiya Okubo, Takayoshi Yamashita, Atsushi Shimada, H. Ogata","doi":"10.1145/3027385.3029479","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for predicting final grades of students by a Recurrent Neural Network (RNN) from the log data stored in the educational systems. We applied this method to the log data from 108 students and examined the accuracy of prediction. From the experimental results, comparing with multiple regression analysis, it is confirmed that an RNN is effective to early prediction of final grades.","PeriodicalId":160897,"journal":{"name":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","volume":"52 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"144","resultStr":"{\"title\":\"A neural network approach for students' performance prediction\",\"authors\":\"Fumiya Okubo, Takayoshi Yamashita, Atsushi Shimada, H. Ogata\",\"doi\":\"10.1145/3027385.3029479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method for predicting final grades of students by a Recurrent Neural Network (RNN) from the log data stored in the educational systems. We applied this method to the log data from 108 students and examined the accuracy of prediction. From the experimental results, comparing with multiple regression analysis, it is confirmed that an RNN is effective to early prediction of final grades.\",\"PeriodicalId\":160897,\"journal\":{\"name\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"volume\":\"52 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"144\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh International Learning Analytics & Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3027385.3029479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3029479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 144

摘要

在本文中,我们提出了一种利用循环神经网络(RNN)从存储在教育系统中的日志数据中预测学生期末成绩的方法。我们将该方法应用于108名学生的日志数据,并检验了预测的准确性。通过与多元回归分析的对比,验证了RNN对期末成绩的早期预测是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network approach for students' performance prediction
In this paper, we propose a method for predicting final grades of students by a Recurrent Neural Network (RNN) from the log data stored in the educational systems. We applied this method to the log data from 108 students and examined the accuracy of prediction. From the experimental results, comparing with multiple regression analysis, it is confirmed that an RNN is effective to early prediction of final grades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信