亚当基因组模式-扩展精确医学研究*

Fodil Belghait, Beatriz S. Kanzki, A. April
{"title":"亚当基因组模式-扩展精确医学研究*","authors":"Fodil Belghait, Beatriz S. Kanzki, A. April","doi":"10.1145/3194658.3194669","DOIUrl":null,"url":null,"abstract":"High-throughput sequencing technologies have made research on precision medicine possible. Precision medicine treatments will be effective for individual patients based on their genomic, environmental, and lifestyle factors. This requires integrating this data to find one, or a combination of, single nucleotide polymorphisms (SNPs) linked to a disease or treatment [1]. In 2013, the University of California Berkeley's AmpLab created the ADAM genomic format that allows the transformation, analysis and querying of large amounts of genomics data by using a columnar file format. However, while ADAM addresses the issue of processing large genomics data; it lacks the ability to link the patients' clinical and demographical data, which is crucial in precision medicine research. This paper presents an ADAM genomic schema extension to support clinical and demographical data by automating the addition of data items to the currently available ADAM schema. This extension allows for clinical, demographical and epidemiological analysis at large scale as initially intended by the AmpLab.","PeriodicalId":216658,"journal":{"name":"Proceedings of the 2018 International Conference on Digital Health","volume":"672 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ADAM Genomics Schema - Extension for Precision Medicine Research*\",\"authors\":\"Fodil Belghait, Beatriz S. Kanzki, A. April\",\"doi\":\"10.1145/3194658.3194669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-throughput sequencing technologies have made research on precision medicine possible. Precision medicine treatments will be effective for individual patients based on their genomic, environmental, and lifestyle factors. This requires integrating this data to find one, or a combination of, single nucleotide polymorphisms (SNPs) linked to a disease or treatment [1]. In 2013, the University of California Berkeley's AmpLab created the ADAM genomic format that allows the transformation, analysis and querying of large amounts of genomics data by using a columnar file format. However, while ADAM addresses the issue of processing large genomics data; it lacks the ability to link the patients' clinical and demographical data, which is crucial in precision medicine research. This paper presents an ADAM genomic schema extension to support clinical and demographical data by automating the addition of data items to the currently available ADAM schema. This extension allows for clinical, demographical and epidemiological analysis at large scale as initially intended by the AmpLab.\",\"PeriodicalId\":216658,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Digital Health\",\"volume\":\"672 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Digital Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194658.3194669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194658.3194669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高通量测序技术使精准医学的研究成为可能。精准医学治疗将根据患者的基因、环境和生活方式等因素对个体患者有效。这需要整合这些数据,以找到一个或多个与疾病或治疗相关的单核苷酸多态性(snp)。2013年,加州大学伯克利分校的AmpLab创建了ADAM基因组格式,允许使用柱状文件格式转换,分析和查询大量基因组数据。然而,虽然ADAM解决了处理大型基因组数据的问题;它缺乏将患者的临床和人口统计数据联系起来的能力,而这在精准医学研究中至关重要。本文提出了一个ADAM基因组模式扩展,通过自动向当前可用的ADAM模式添加数据项来支持临床和人口统计数据。这一扩展允许临床,人口和流行病学分析,在大规模的最初打算由AmpLab。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ADAM Genomics Schema - Extension for Precision Medicine Research*
High-throughput sequencing technologies have made research on precision medicine possible. Precision medicine treatments will be effective for individual patients based on their genomic, environmental, and lifestyle factors. This requires integrating this data to find one, or a combination of, single nucleotide polymorphisms (SNPs) linked to a disease or treatment [1]. In 2013, the University of California Berkeley's AmpLab created the ADAM genomic format that allows the transformation, analysis and querying of large amounts of genomics data by using a columnar file format. However, while ADAM addresses the issue of processing large genomics data; it lacks the ability to link the patients' clinical and demographical data, which is crucial in precision medicine research. This paper presents an ADAM genomic schema extension to support clinical and demographical data by automating the addition of data items to the currently available ADAM schema. This extension allows for clinical, demographical and epidemiological analysis at large scale as initially intended by the AmpLab.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信