以导热系数为质量目标的石墨烯/聚丙烯复合材料注射成型参数分析

Ching-Been Yang, W. Peng, Yan-Wen Huang, H. Chiang
{"title":"以导热系数为质量目标的石墨烯/聚丙烯复合材料注射成型参数分析","authors":"Ching-Been Yang, W. Peng, Yan-Wen Huang, H. Chiang","doi":"10.1109/AMCON.2018.8614873","DOIUrl":null,"url":null,"abstract":"Polypropylene (PP) is a common thermoplastic polymer material with high impact resistance and strong mechanical properties, and it is thus widely used in the industry. With high thermal conductivity and low resistivity, graphene is expected to be used to develop a new generation of electrical components. In this study, we mix blended graphene and PP into a composite material for injection molding specimens. Experiments were designed using an orthogonal array in the Taguchi method to obtain the optimal parameter combination for thermal conductivity, the process parameters including A. injection temperature, B. holding time, C. injection pressure, and D. the graphene ratio. The study results indicate that the optimal parameter combination in the Taguchi analysis was A3BlC2D3, the resulting thermal conductivity coefficient of which was 0.102 (W/m2x2122; K). The optimal parameter combination of the original design in the L9 orthogonal array was A2BlC2D3, the thermal conductivity coefficient of which was 0.081 (W/m2x2122; K). Thus, the improvement rate 25.9%.","PeriodicalId":438307,"journal":{"name":"2018 IEEE International Conference on Advanced Manufacturing (ICAM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of injection molding parameters for graphene/polypropylene composite material with thermal conductivity as quality objective\",\"authors\":\"Ching-Been Yang, W. Peng, Yan-Wen Huang, H. Chiang\",\"doi\":\"10.1109/AMCON.2018.8614873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polypropylene (PP) is a common thermoplastic polymer material with high impact resistance and strong mechanical properties, and it is thus widely used in the industry. With high thermal conductivity and low resistivity, graphene is expected to be used to develop a new generation of electrical components. In this study, we mix blended graphene and PP into a composite material for injection molding specimens. Experiments were designed using an orthogonal array in the Taguchi method to obtain the optimal parameter combination for thermal conductivity, the process parameters including A. injection temperature, B. holding time, C. injection pressure, and D. the graphene ratio. The study results indicate that the optimal parameter combination in the Taguchi analysis was A3BlC2D3, the resulting thermal conductivity coefficient of which was 0.102 (W/m2x2122; K). The optimal parameter combination of the original design in the L9 orthogonal array was A2BlC2D3, the thermal conductivity coefficient of which was 0.081 (W/m2x2122; K). Thus, the improvement rate 25.9%.\",\"PeriodicalId\":438307,\"journal\":{\"name\":\"2018 IEEE International Conference on Advanced Manufacturing (ICAM)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Advanced Manufacturing (ICAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMCON.2018.8614873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Advanced Manufacturing (ICAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMCON.2018.8614873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚丙烯(PP)是一种常见的热塑性高分子材料,具有较高的抗冲击性能和较强的机械性能,因此在工业上得到了广泛的应用。石墨烯具有高导热性和低电阻率的特点,有望用于开发新一代电子元件。在这项研究中,我们将混合石墨烯和PP混合成一种复合材料,用于注塑样品。实验采用田口法正交设计,得到最佳导热系数参数组合,工艺参数包括A.注射温度、B.保温时间、C.注射压力和D.石墨烯比。研究结果表明,Taguchi分析中最优参数组合为A3BlC2D3,其导热系数为0.102 (W/m2x2122;原设计在L9正交阵列中的最优参数组合为A2BlC2D3,其导热系数为0.081 (W/m2x2122;K),因此,改进率为25.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of injection molding parameters for graphene/polypropylene composite material with thermal conductivity as quality objective
Polypropylene (PP) is a common thermoplastic polymer material with high impact resistance and strong mechanical properties, and it is thus widely used in the industry. With high thermal conductivity and low resistivity, graphene is expected to be used to develop a new generation of electrical components. In this study, we mix blended graphene and PP into a composite material for injection molding specimens. Experiments were designed using an orthogonal array in the Taguchi method to obtain the optimal parameter combination for thermal conductivity, the process parameters including A. injection temperature, B. holding time, C. injection pressure, and D. the graphene ratio. The study results indicate that the optimal parameter combination in the Taguchi analysis was A3BlC2D3, the resulting thermal conductivity coefficient of which was 0.102 (W/m2x2122; K). The optimal parameter combination of the original design in the L9 orthogonal array was A2BlC2D3, the thermal conductivity coefficient of which was 0.081 (W/m2x2122; K). Thus, the improvement rate 25.9%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信