Libby-Novick广义beta与Kumaraswamy分布的判别:理论与方法

I. Ghosh
{"title":"Libby-Novick广义beta与Kumaraswamy分布的判别:理论与方法","authors":"I. Ghosh","doi":"10.1080/27684520.2023.2244951","DOIUrl":null,"url":null,"abstract":"In fitting a continuous bounded data, the generalized beta (and several variants of this distribution) and the two-parameter Kumaraswamy (KW) distributions are the two most prominent univariate continuous distributions that come to our mind. There are some common features between these two rival probability models and to select one of them in a practical situation can be of great interest. Consequently, in this paper, wediscussvariousmethodsofselectionbetweenthegeneralizedbetaproposedbyLibbyandNovick(1982) (LNGB)andtheKWdistributions,suchasthecriteriabasedonprobabilityofcorrectselectionwhichisanimprovementoverthelikelihoodratiostatisticapproach,andalsobasedonpseudo-distancemeasures.We obtain an approximation for the probability of correct selection under the hypotheses H LNGB and H KW , and selectthemodelthatmaximizesit.However,ourproposalismoreappealinginthesensethatweprovidethe comparisonstudyfortheLNGBdistributionthatsubsumesbothtypesofclassicalbetaandexponentiatedgenerators(see,fordetails,Cordeiroetal.2014;LibbyandNovick1982)whichcanbeanaturalcompetitor ofatwo-parameterKWdistributioninanappropriatescenario.","PeriodicalId":200461,"journal":{"name":"Research in Statistics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On discriminating between Libby-Novick generalized beta and Kumaraswamy distributions: theory and methods\",\"authors\":\"I. Ghosh\",\"doi\":\"10.1080/27684520.2023.2244951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In fitting a continuous bounded data, the generalized beta (and several variants of this distribution) and the two-parameter Kumaraswamy (KW) distributions are the two most prominent univariate continuous distributions that come to our mind. There are some common features between these two rival probability models and to select one of them in a practical situation can be of great interest. Consequently, in this paper, wediscussvariousmethodsofselectionbetweenthegeneralizedbetaproposedbyLibbyandNovick(1982) (LNGB)andtheKWdistributions,suchasthecriteriabasedonprobabilityofcorrectselectionwhichisanimprovementoverthelikelihoodratiostatisticapproach,andalsobasedonpseudo-distancemeasures.We obtain an approximation for the probability of correct selection under the hypotheses H LNGB and H KW , and selectthemodelthatmaximizesit.However,ourproposalismoreappealinginthesensethatweprovidethe comparisonstudyfortheLNGBdistributionthatsubsumesbothtypesofclassicalbetaandexponentiatedgenerators(see,fordetails,Cordeiroetal.2014;LibbyandNovick1982)whichcanbeanaturalcompetitor ofatwo-parameterKWdistributioninanappropriatescenario.\",\"PeriodicalId\":200461,\"journal\":{\"name\":\"Research in Statistics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/27684520.2023.2244951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/27684520.2023.2244951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在拟合连续有界数据时,广义beta(以及该分布的几个变体)和双参数Kumaraswamy (KW)分布是我们想到的两个最突出的单变量连续分布。这两种相互竞争的概率模型之间有一些共同的特征,在实际情况中选择其中一种是非常有趣的。因此,在本文中,我们讨论了libbyandnovick (1982) (LNGB)提出的广义贝叶斯(广义贝叶斯)和kwdistribution之间的各种选择方法,例如基于正确选择概率的标准,这是对似然统计方法的改进,以及基于伪距离度量的标准。我们在假设H LNGB和H KW下得到了正确选择概率的近似值,并选择了使其最大化的模型。然而,我们的提议更有吸引力,因为我们提供了包含经典β和指数生成器类型的ngb分布的比较研究(详见cordeiroal .2014;LibbyandNovick1982),它们可以在适当的情况下成为双参数k分布的自然竞争对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On discriminating between Libby-Novick generalized beta and Kumaraswamy distributions: theory and methods
In fitting a continuous bounded data, the generalized beta (and several variants of this distribution) and the two-parameter Kumaraswamy (KW) distributions are the two most prominent univariate continuous distributions that come to our mind. There are some common features between these two rival probability models and to select one of them in a practical situation can be of great interest. Consequently, in this paper, wediscussvariousmethodsofselectionbetweenthegeneralizedbetaproposedbyLibbyandNovick(1982) (LNGB)andtheKWdistributions,suchasthecriteriabasedonprobabilityofcorrectselectionwhichisanimprovementoverthelikelihoodratiostatisticapproach,andalsobasedonpseudo-distancemeasures.We obtain an approximation for the probability of correct selection under the hypotheses H LNGB and H KW , and selectthemodelthatmaximizesit.However,ourproposalismoreappealinginthesensethatweprovidethe comparisonstudyfortheLNGBdistributionthatsubsumesbothtypesofclassicalbetaandexponentiatedgenerators(see,fordetails,Cordeiroetal.2014;LibbyandNovick1982)whichcanbeanaturalcompetitor ofatwo-parameterKWdistributioninanappropriatescenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信