R. Swendsen
{"title":"Quantum Ensembles","authors":"R. Swendsen","doi":"10.1093/oso/9780198853237.003.0023","DOIUrl":null,"url":null,"abstract":"The study of quantum statistical mechanics begins with a review of the basic principles of quantum mechanics. Schrödinger’s equation is introduced and Eigenstates (or stationary states) are defined. Model probability for quantum statistics is assumed to have a uniform distribution in phases. Wave functions for many-body systems are defined. The density matrix is introduced. The Planck entropy and the microcanonical ensemble are defined. The differences between classical and quantum statistical mechanics are all based on the differing concepts of a microscopic ‘state’. While the classical microscopic state (specified by a point in phase space) determines the exact position and momentum of every particle, the quantum mechanical state determines neither; quantum states can only provide probability distributions for observable quantities.","PeriodicalId":102491,"journal":{"name":"An Introduction to Statistical Mechanics and Thermodynamics","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"An Introduction to Statistical Mechanics and Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198853237.003.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子统计力学的研究始于对量子力学基本原理的回顾。引入Schrödinger方程,定义特征态(或定态)。假设量子统计的模型概率在相位上具有均匀分布。定义了多体系统的波函数。介绍了密度矩阵。定义了普朗克熵和微正则系综。经典统计力学和量子统计力学之间的差异都是基于微观“状态”的不同概念。经典的微观状态(由相空间中的一个点指定)决定了每个粒子的确切位置和动量,而量子力学状态两者都不决定;量子态只能提供可观测量的概率分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Ensembles
The study of quantum statistical mechanics begins with a review of the basic principles of quantum mechanics. Schrödinger’s equation is introduced and Eigenstates (or stationary states) are defined. Model probability for quantum statistics is assumed to have a uniform distribution in phases. Wave functions for many-body systems are defined. The density matrix is introduced. The Planck entropy and the microcanonical ensemble are defined. The differences between classical and quantum statistical mechanics are all based on the differing concepts of a microscopic ‘state’. While the classical microscopic state (specified by a point in phase space) determines the exact position and momentum of every particle, the quantum mechanical state determines neither; quantum states can only provide probability distributions for observable quantities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信