多媒体应用中的有效降维

Seungdo Jeong, Sang-Wook Kim, Whoiyul Kim, Byung-Uk Choi
{"title":"多媒体应用中的有效降维","authors":"Seungdo Jeong, Sang-Wook Kim, Whoiyul Kim, Byung-Uk Choi","doi":"10.1109/CIIP.2009.4937885","DOIUrl":null,"url":null,"abstract":"In multimedia information retrieval, multimedia data such as images and videos are represented as vectors in high-dimensional space. To search these vectors efficiently, a variety of indexing methods have been proposed. However, the performance of these indexing methods degrades dramatically with increasing dimensionality, which is known as the dimensionality curse. To resolve the dimensionality curse, dimensionality reduction methods have been proposed. They map feature vectors in high-dimensional space into vectors in low-dimensional space before the data are indexed. This paper proposes an improvement for the previously proposed dimensionality reduction. The previous method uses the norm and the approximated angle for every subvector. However, more storage space and a number of cosine computations are required because of multiple angle components. In this paper, we propose an alternative method employing a single angle component instead of respective angles for all the subvectors. Because only one angle for every subvector is considered, though the loss of information regarding the original data vector increases, which degrades the performance slightly, we can successfully reduce storage space as well as a number of cosine computations. Finally, we verify the superiority of the proposed approach via extensive experiments with synthetic and real-life data sets.","PeriodicalId":349149,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Image Processing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective dimensionality reduction in multimedia applications\",\"authors\":\"Seungdo Jeong, Sang-Wook Kim, Whoiyul Kim, Byung-Uk Choi\",\"doi\":\"10.1109/CIIP.2009.4937885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multimedia information retrieval, multimedia data such as images and videos are represented as vectors in high-dimensional space. To search these vectors efficiently, a variety of indexing methods have been proposed. However, the performance of these indexing methods degrades dramatically with increasing dimensionality, which is known as the dimensionality curse. To resolve the dimensionality curse, dimensionality reduction methods have been proposed. They map feature vectors in high-dimensional space into vectors in low-dimensional space before the data are indexed. This paper proposes an improvement for the previously proposed dimensionality reduction. The previous method uses the norm and the approximated angle for every subvector. However, more storage space and a number of cosine computations are required because of multiple angle components. In this paper, we propose an alternative method employing a single angle component instead of respective angles for all the subvectors. Because only one angle for every subvector is considered, though the loss of information regarding the original data vector increases, which degrades the performance slightly, we can successfully reduce storage space as well as a number of cosine computations. Finally, we verify the superiority of the proposed approach via extensive experiments with synthetic and real-life data sets.\",\"PeriodicalId\":349149,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence for Image Processing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence for Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIIP.2009.4937885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIP.2009.4937885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多媒体信息检索中,图像、视频等多媒体数据在高维空间中被表示为向量。为了有效地搜索这些向量,人们提出了各种索引方法。然而,这些索引方法的性能随着维数的增加而急剧下降,这被称为维数诅咒。为了解决维数诅咒,提出了维数降维方法。在对数据进行索引之前,它们将高维空间的特征向量映射到低维空间的向量。本文对先前提出的降维方法进行了改进。前一种方法对每个子向量使用范数和近似角度。然而,由于多个角度分量,需要更多的存储空间和大量的余弦计算。在本文中,我们提出了一种替代方法,使用单个角度分量代替所有子向量的各自角度。因为每个子向量只考虑一个角度,虽然关于原始数据向量的信息丢失会增加,这会略微降低性能,但我们可以成功地减少存储空间以及余弦计算的数量。最后,我们通过合成和真实数据集的大量实验验证了所提出方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective dimensionality reduction in multimedia applications
In multimedia information retrieval, multimedia data such as images and videos are represented as vectors in high-dimensional space. To search these vectors efficiently, a variety of indexing methods have been proposed. However, the performance of these indexing methods degrades dramatically with increasing dimensionality, which is known as the dimensionality curse. To resolve the dimensionality curse, dimensionality reduction methods have been proposed. They map feature vectors in high-dimensional space into vectors in low-dimensional space before the data are indexed. This paper proposes an improvement for the previously proposed dimensionality reduction. The previous method uses the norm and the approximated angle for every subvector. However, more storage space and a number of cosine computations are required because of multiple angle components. In this paper, we propose an alternative method employing a single angle component instead of respective angles for all the subvectors. Because only one angle for every subvector is considered, though the loss of information regarding the original data vector increases, which degrades the performance slightly, we can successfully reduce storage space as well as a number of cosine computations. Finally, we verify the superiority of the proposed approach via extensive experiments with synthetic and real-life data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信