Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu, T. Delbrück
{"title":"DeltaRNN:一种高效的循环神经网络加速器","authors":"Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu, T. Delbrück","doi":"10.1145/3174243.3174261","DOIUrl":null,"url":null,"abstract":"Recurrent Neural Networks (RNNs) are widely used in speech recognition and natural language processing applications because of their capability to process temporal sequences. Because RNNs are fully connected, they require a large number of weight memory accesses, leading to high power consumption. Recent theory has shown that an RNN delta network update approach can reduce memory access and computes with negligible accuracy loss. This paper describes the implementation of this theoretical approach in a hardware accelerator called \"DeltaRNN\" (DRNN). The DRNN updates the output of a neuron only when the neuron»s activation changes by more than a delta threshold. It was implemented on a Xilinx Zynq-7100 FPGA. FPGA measurement results from a single-layer RNN of 256 Gated Recurrent Unit (GRU) neurons show that the DRNN achieves 1.2 TOp/s effective throughput and 164 GOp/s/W power efficiency. The delta update leads to a 5.7x speedup compared to a conventional RNN update because of the sparsity created by the DN algorithm and the zero-skipping ability of DRNN.","PeriodicalId":164936,"journal":{"name":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":"{\"title\":\"DeltaRNN: A Power-efficient Recurrent Neural Network Accelerator\",\"authors\":\"Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu, T. Delbrück\",\"doi\":\"10.1145/3174243.3174261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recurrent Neural Networks (RNNs) are widely used in speech recognition and natural language processing applications because of their capability to process temporal sequences. Because RNNs are fully connected, they require a large number of weight memory accesses, leading to high power consumption. Recent theory has shown that an RNN delta network update approach can reduce memory access and computes with negligible accuracy loss. This paper describes the implementation of this theoretical approach in a hardware accelerator called \\\"DeltaRNN\\\" (DRNN). The DRNN updates the output of a neuron only when the neuron»s activation changes by more than a delta threshold. It was implemented on a Xilinx Zynq-7100 FPGA. FPGA measurement results from a single-layer RNN of 256 Gated Recurrent Unit (GRU) neurons show that the DRNN achieves 1.2 TOp/s effective throughput and 164 GOp/s/W power efficiency. The delta update leads to a 5.7x speedup compared to a conventional RNN update because of the sparsity created by the DN algorithm and the zero-skipping ability of DRNN.\",\"PeriodicalId\":164936,\"journal\":{\"name\":\"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3174243.3174261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3174243.3174261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DeltaRNN: A Power-efficient Recurrent Neural Network Accelerator
Recurrent Neural Networks (RNNs) are widely used in speech recognition and natural language processing applications because of their capability to process temporal sequences. Because RNNs are fully connected, they require a large number of weight memory accesses, leading to high power consumption. Recent theory has shown that an RNN delta network update approach can reduce memory access and computes with negligible accuracy loss. This paper describes the implementation of this theoretical approach in a hardware accelerator called "DeltaRNN" (DRNN). The DRNN updates the output of a neuron only when the neuron»s activation changes by more than a delta threshold. It was implemented on a Xilinx Zynq-7100 FPGA. FPGA measurement results from a single-layer RNN of 256 Gated Recurrent Unit (GRU) neurons show that the DRNN achieves 1.2 TOp/s effective throughput and 164 GOp/s/W power efficiency. The delta update leads to a 5.7x speedup compared to a conventional RNN update because of the sparsity created by the DN algorithm and the zero-skipping ability of DRNN.